Ahmad Rahdari;Elham Keshavarz;Ehsan Nowroozi;Rahim Taheri;Mehrdad Hajizadeh;Mohammadreza Mohammadi;Sima Sinaei;Thomas Bauschert
{"title":"分布式云计算中的隐私和安全研究:探索联邦学习及超越","authors":"Ahmad Rahdari;Elham Keshavarz;Ehsan Nowroozi;Rahim Taheri;Mehrdad Hajizadeh;Mohammadreza Mohammadi;Sima Sinaei;Thomas Bauschert","doi":"10.1109/OJCOMS.2025.3560034","DOIUrl":null,"url":null,"abstract":"The increasing need to process large, high-dimensional datasets and the substantial computational power required have made the use of distributed cloud servers essential. These servers provide cost-effective solutions that make storage and computing accessible to ordinary users. However, they might face significant vulnerabilities, including data leakage, metadata spoofing, insecure programming interfaces, malicious insiders, and denial of service. To gain public trust in distributed computing, addressing concerns related to privacy and security while ensuring high performance and efficiency is crucial. Multiparty computation, differential privacy, trusted execution environments, and federated learning are the four major approaches developed to address these issues. This survey paper reviews and compares these four approaches based on a structured framework, by highlighting recent top-tier research papers published in prestigious journals and conferences. Particular attention is given to progress in federated learning, which trains a model across multiple devices without sharing the actual data, keeping data private and secure. The survey also highlights federated learning techniques, including secure federated learning, by detecting malicious updates and privacy-preserving federated learning via data encryption, data perturbation, and anonymization, as new paradigms for building responsible computing systems. Finally, the survey discusses future research directions for connecting academic innovations with real-world industrial applications.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"3710-3744"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10963898","citationCount":"0","resultStr":"{\"title\":\"A Survey on Privacy and Security in Distributed Cloud Computing: Exploring Federated Learning and Beyond\",\"authors\":\"Ahmad Rahdari;Elham Keshavarz;Ehsan Nowroozi;Rahim Taheri;Mehrdad Hajizadeh;Mohammadreza Mohammadi;Sima Sinaei;Thomas Bauschert\",\"doi\":\"10.1109/OJCOMS.2025.3560034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing need to process large, high-dimensional datasets and the substantial computational power required have made the use of distributed cloud servers essential. These servers provide cost-effective solutions that make storage and computing accessible to ordinary users. However, they might face significant vulnerabilities, including data leakage, metadata spoofing, insecure programming interfaces, malicious insiders, and denial of service. To gain public trust in distributed computing, addressing concerns related to privacy and security while ensuring high performance and efficiency is crucial. Multiparty computation, differential privacy, trusted execution environments, and federated learning are the four major approaches developed to address these issues. This survey paper reviews and compares these four approaches based on a structured framework, by highlighting recent top-tier research papers published in prestigious journals and conferences. Particular attention is given to progress in federated learning, which trains a model across multiple devices without sharing the actual data, keeping data private and secure. The survey also highlights federated learning techniques, including secure federated learning, by detecting malicious updates and privacy-preserving federated learning via data encryption, data perturbation, and anonymization, as new paradigms for building responsible computing systems. Finally, the survey discusses future research directions for connecting academic innovations with real-world industrial applications.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"3710-3744\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10963898\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963898/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963898/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Survey on Privacy and Security in Distributed Cloud Computing: Exploring Federated Learning and Beyond
The increasing need to process large, high-dimensional datasets and the substantial computational power required have made the use of distributed cloud servers essential. These servers provide cost-effective solutions that make storage and computing accessible to ordinary users. However, they might face significant vulnerabilities, including data leakage, metadata spoofing, insecure programming interfaces, malicious insiders, and denial of service. To gain public trust in distributed computing, addressing concerns related to privacy and security while ensuring high performance and efficiency is crucial. Multiparty computation, differential privacy, trusted execution environments, and federated learning are the four major approaches developed to address these issues. This survey paper reviews and compares these four approaches based on a structured framework, by highlighting recent top-tier research papers published in prestigious journals and conferences. Particular attention is given to progress in federated learning, which trains a model across multiple devices without sharing the actual data, keeping data private and secure. The survey also highlights federated learning techniques, including secure federated learning, by detecting malicious updates and privacy-preserving federated learning via data encryption, data perturbation, and anonymization, as new paradigms for building responsible computing systems. Finally, the survey discusses future research directions for connecting academic innovations with real-world industrial applications.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.