二维点源倏逝波的闭型解

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Xin Du
{"title":"二维点源倏逝波的闭型解","authors":"Xin Du","doi":"10.23919/comex.2024XBL0200","DOIUrl":null,"url":null,"abstract":"Based on the angular spectrum representation (ASR), the total field can be separated into propagating and evanescent waves. This paper proposes a closed-form solution of the evanescent wave for a two-dimensional (2D) point source by using ASR, which considers the aperture facing an arbitrary orientation. To validate the proposed solution in terms of accuracy and computational time, a robust numerical method, i.e., a double exponential (DE) formula, is applied. Computer simulation is conducted in the near-field region (0.2λ-λ). The results show that the proposed method presents a good accuracy with a low error of less than 0.1 dB, compared with the DE formula. Moreover, the calculation time is improved by 7.9-16.4 times by comparing the proposal with the DE formula. From the simulated results, it can be found that the evanescent wave calculated by ASR has an angle dependence for a 2D point source when the aperture used in ASR faces an arbitrary orientation. Our proposal can mathematically explain the reason for an angle dependence. Furthermore, this work finds that fixing the aperture normal to the line of sight obtains the angle-independent evanescent wave for a 2D point source.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"14 05","pages":"201-204"},"PeriodicalIF":0.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10924594","citationCount":"0","resultStr":"{\"title\":\"Closed-Form Solution for Evanescent Wave of a Two-Dimensional Point Source\",\"authors\":\"Xin Du\",\"doi\":\"10.23919/comex.2024XBL0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the angular spectrum representation (ASR), the total field can be separated into propagating and evanescent waves. This paper proposes a closed-form solution of the evanescent wave for a two-dimensional (2D) point source by using ASR, which considers the aperture facing an arbitrary orientation. To validate the proposed solution in terms of accuracy and computational time, a robust numerical method, i.e., a double exponential (DE) formula, is applied. Computer simulation is conducted in the near-field region (0.2λ-λ). The results show that the proposed method presents a good accuracy with a low error of less than 0.1 dB, compared with the DE formula. Moreover, the calculation time is improved by 7.9-16.4 times by comparing the proposal with the DE formula. From the simulated results, it can be found that the evanescent wave calculated by ASR has an angle dependence for a 2D point source when the aperture used in ASR faces an arbitrary orientation. Our proposal can mathematically explain the reason for an angle dependence. Furthermore, this work finds that fixing the aperture normal to the line of sight obtains the angle-independent evanescent wave for a 2D point source.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"14 05\",\"pages\":\"201-204\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10924594\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924594/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924594/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于角谱表示(ASR),可以将总场分为传播波和倏逝波。本文提出了一种考虑面向任意方向孔径的二维点源倏逝波的闭式解。为了在精度和计算时间方面验证所提出的解决方案,采用了一种鲁棒的数值方法,即双指数(DE)公式。在近场区域(0.2λ-λ)进行计算机模拟。结果表明,与DE公式相比,该方法具有较好的精度,误差小于0.1 dB。与DE公式相比,计算时间提高了7.9 ~ 16.4倍。仿真结果表明,对于二维点源,当孔径面向任意方向时,ASR计算的倏逝波具有角度依赖性。我们的建议可以从数学上解释角度依赖的原因。此外,本工作还发现,将孔径垂直于视线方向可以获得与角度无关的二维点源倏逝波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed-Form Solution for Evanescent Wave of a Two-Dimensional Point Source
Based on the angular spectrum representation (ASR), the total field can be separated into propagating and evanescent waves. This paper proposes a closed-form solution of the evanescent wave for a two-dimensional (2D) point source by using ASR, which considers the aperture facing an arbitrary orientation. To validate the proposed solution in terms of accuracy and computational time, a robust numerical method, i.e., a double exponential (DE) formula, is applied. Computer simulation is conducted in the near-field region (0.2λ-λ). The results show that the proposed method presents a good accuracy with a low error of less than 0.1 dB, compared with the DE formula. Moreover, the calculation time is improved by 7.9-16.4 times by comparing the proposal with the DE formula. From the simulated results, it can be found that the evanescent wave calculated by ASR has an angle dependence for a 2D point source when the aperture used in ASR faces an arbitrary orientation. Our proposal can mathematically explain the reason for an angle dependence. Furthermore, this work finds that fixing the aperture normal to the line of sight obtains the angle-independent evanescent wave for a 2D point source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信