多台备份服务器共享保护的中间件不可用性分析

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Naohide Wakuda;Ryuta Shiraki;Eiji Oki
{"title":"多台备份服务器共享保护的中间件不可用性分析","authors":"Naohide Wakuda;Ryuta Shiraki;Eiji Oki","doi":"10.1109/OJCOMS.2025.3562234","DOIUrl":null,"url":null,"abstract":"Middlebox functions, implemented as software on general-purpose servers via network function virtualization, require reliable protection mechanisms to ensure service continuity. Assessing the unavailability of these functions is critical, as failures can lead to significant service disruptions. However, existing analytical models primarily assume that a function is protected by at most one or two backup servers, limiting their applicability in scenarios requiring higher resilience. To address this limitation, this paper proposes an analytical model for evaluating the unavailability of middlebox functions under a multiple-backup shared protection strategy, where multiple backup servers protect one or more functions. Our model allows each function to be protected by multiple backup servers, ensuring availability while ensuring that each backup server can simultaneously recover at most one function. Utilizing a Markov chain, we analyze state transitions and establish equilibrium-state equations, providing an analytical foundation for evaluating the performance of the multiple-backup shared protection strategy. Numerical results demonstrate that this strategy significantly enhances availability, reducing unavailability by up to 72.3% compared to the single-backup shared protection strategy in the scenarios examined. Our study provides a detailed analysis of backup allocation strategies, focusing on their impact on function availability and offering more profound insights into their effectiveness through theoretical properties and performance comparisons with existing strategies. Our evaluation reveals that the multiple-backup shared protection strategy reduces unavailability by up to 64.8% compared to the single-backup shared protection strategy in the examined allocation cases.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"3868-3881"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970014","citationCount":"0","resultStr":"{\"title\":\"Analysis of Unavailability in Middleboxes With Multiple Backup Servers Under Shared Protection\",\"authors\":\"Naohide Wakuda;Ryuta Shiraki;Eiji Oki\",\"doi\":\"10.1109/OJCOMS.2025.3562234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Middlebox functions, implemented as software on general-purpose servers via network function virtualization, require reliable protection mechanisms to ensure service continuity. Assessing the unavailability of these functions is critical, as failures can lead to significant service disruptions. However, existing analytical models primarily assume that a function is protected by at most one or two backup servers, limiting their applicability in scenarios requiring higher resilience. To address this limitation, this paper proposes an analytical model for evaluating the unavailability of middlebox functions under a multiple-backup shared protection strategy, where multiple backup servers protect one or more functions. Our model allows each function to be protected by multiple backup servers, ensuring availability while ensuring that each backup server can simultaneously recover at most one function. Utilizing a Markov chain, we analyze state transitions and establish equilibrium-state equations, providing an analytical foundation for evaluating the performance of the multiple-backup shared protection strategy. Numerical results demonstrate that this strategy significantly enhances availability, reducing unavailability by up to 72.3% compared to the single-backup shared protection strategy in the scenarios examined. Our study provides a detailed analysis of backup allocation strategies, focusing on their impact on function availability and offering more profound insights into their effectiveness through theoretical properties and performance comparisons with existing strategies. Our evaluation reveals that the multiple-backup shared protection strategy reduces unavailability by up to 64.8% compared to the single-backup shared protection strategy in the examined allocation cases.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"3868-3881\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10970014/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10970014/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

Middlebox功能通过网络功能虚拟化,以软件形式在通用服务器上实现,需要可靠的保护机制来保证业务的连续性。评估这些功能的不可用性至关重要,因为故障可能导致严重的服务中断。然而,现有的分析模型主要假设一个功能最多由一个或两个备份服务器保护,这限制了它们在需要更高弹性的场景中的适用性。为了解决这一限制,本文提出了在多备份共享保护策略下评估中间盒功能不可用性的分析模型,其中多个备份服务器保护一个或多个功能。我们的模型允许每个功能由多个备份服务器保护,在保证可用性的同时保证每个备份服务器最多可以同时恢复一个功能。利用马尔可夫链分析了多备份共享保护策略的状态转移,建立了平衡状态方程,为评价多备份共享保护策略的性能提供了分析基础。数值结果表明,在测试的场景中,与单备份共享保护策略相比,该策略显著提高了可用性,将不可用性降低了72.3%。我们的研究详细分析了备份分配策略,重点关注它们对功能可用性的影响,并通过理论性质和与现有策略的性能比较,对其有效性提供了更深刻的见解。我们的评估显示,在研究的分配案例中,与单备份共享保护策略相比,多备份共享保护策略最多可减少64.8%的不可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Unavailability in Middleboxes With Multiple Backup Servers Under Shared Protection
Middlebox functions, implemented as software on general-purpose servers via network function virtualization, require reliable protection mechanisms to ensure service continuity. Assessing the unavailability of these functions is critical, as failures can lead to significant service disruptions. However, existing analytical models primarily assume that a function is protected by at most one or two backup servers, limiting their applicability in scenarios requiring higher resilience. To address this limitation, this paper proposes an analytical model for evaluating the unavailability of middlebox functions under a multiple-backup shared protection strategy, where multiple backup servers protect one or more functions. Our model allows each function to be protected by multiple backup servers, ensuring availability while ensuring that each backup server can simultaneously recover at most one function. Utilizing a Markov chain, we analyze state transitions and establish equilibrium-state equations, providing an analytical foundation for evaluating the performance of the multiple-backup shared protection strategy. Numerical results demonstrate that this strategy significantly enhances availability, reducing unavailability by up to 72.3% compared to the single-backup shared protection strategy in the scenarios examined. Our study provides a detailed analysis of backup allocation strategies, focusing on their impact on function availability and offering more profound insights into their effectiveness through theoretical properties and performance comparisons with existing strategies. Our evaluation reveals that the multiple-backup shared protection strategy reduces unavailability by up to 64.8% compared to the single-backup shared protection strategy in the examined allocation cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信