{"title":"多台备份服务器共享保护的中间件不可用性分析","authors":"Naohide Wakuda;Ryuta Shiraki;Eiji Oki","doi":"10.1109/OJCOMS.2025.3562234","DOIUrl":null,"url":null,"abstract":"Middlebox functions, implemented as software on general-purpose servers via network function virtualization, require reliable protection mechanisms to ensure service continuity. Assessing the unavailability of these functions is critical, as failures can lead to significant service disruptions. However, existing analytical models primarily assume that a function is protected by at most one or two backup servers, limiting their applicability in scenarios requiring higher resilience. To address this limitation, this paper proposes an analytical model for evaluating the unavailability of middlebox functions under a multiple-backup shared protection strategy, where multiple backup servers protect one or more functions. Our model allows each function to be protected by multiple backup servers, ensuring availability while ensuring that each backup server can simultaneously recover at most one function. Utilizing a Markov chain, we analyze state transitions and establish equilibrium-state equations, providing an analytical foundation for evaluating the performance of the multiple-backup shared protection strategy. Numerical results demonstrate that this strategy significantly enhances availability, reducing unavailability by up to 72.3% compared to the single-backup shared protection strategy in the scenarios examined. Our study provides a detailed analysis of backup allocation strategies, focusing on their impact on function availability and offering more profound insights into their effectiveness through theoretical properties and performance comparisons with existing strategies. Our evaluation reveals that the multiple-backup shared protection strategy reduces unavailability by up to 64.8% compared to the single-backup shared protection strategy in the examined allocation cases.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"3868-3881"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970014","citationCount":"0","resultStr":"{\"title\":\"Analysis of Unavailability in Middleboxes With Multiple Backup Servers Under Shared Protection\",\"authors\":\"Naohide Wakuda;Ryuta Shiraki;Eiji Oki\",\"doi\":\"10.1109/OJCOMS.2025.3562234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Middlebox functions, implemented as software on general-purpose servers via network function virtualization, require reliable protection mechanisms to ensure service continuity. Assessing the unavailability of these functions is critical, as failures can lead to significant service disruptions. However, existing analytical models primarily assume that a function is protected by at most one or two backup servers, limiting their applicability in scenarios requiring higher resilience. To address this limitation, this paper proposes an analytical model for evaluating the unavailability of middlebox functions under a multiple-backup shared protection strategy, where multiple backup servers protect one or more functions. Our model allows each function to be protected by multiple backup servers, ensuring availability while ensuring that each backup server can simultaneously recover at most one function. Utilizing a Markov chain, we analyze state transitions and establish equilibrium-state equations, providing an analytical foundation for evaluating the performance of the multiple-backup shared protection strategy. Numerical results demonstrate that this strategy significantly enhances availability, reducing unavailability by up to 72.3% compared to the single-backup shared protection strategy in the scenarios examined. Our study provides a detailed analysis of backup allocation strategies, focusing on their impact on function availability and offering more profound insights into their effectiveness through theoretical properties and performance comparisons with existing strategies. Our evaluation reveals that the multiple-backup shared protection strategy reduces unavailability by up to 64.8% compared to the single-backup shared protection strategy in the examined allocation cases.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"3868-3881\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10970014/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10970014/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis of Unavailability in Middleboxes With Multiple Backup Servers Under Shared Protection
Middlebox functions, implemented as software on general-purpose servers via network function virtualization, require reliable protection mechanisms to ensure service continuity. Assessing the unavailability of these functions is critical, as failures can lead to significant service disruptions. However, existing analytical models primarily assume that a function is protected by at most one or two backup servers, limiting their applicability in scenarios requiring higher resilience. To address this limitation, this paper proposes an analytical model for evaluating the unavailability of middlebox functions under a multiple-backup shared protection strategy, where multiple backup servers protect one or more functions. Our model allows each function to be protected by multiple backup servers, ensuring availability while ensuring that each backup server can simultaneously recover at most one function. Utilizing a Markov chain, we analyze state transitions and establish equilibrium-state equations, providing an analytical foundation for evaluating the performance of the multiple-backup shared protection strategy. Numerical results demonstrate that this strategy significantly enhances availability, reducing unavailability by up to 72.3% compared to the single-backup shared protection strategy in the scenarios examined. Our study provides a detailed analysis of backup allocation strategies, focusing on their impact on function availability and offering more profound insights into their effectiveness through theoretical properties and performance comparisons with existing strategies. Our evaluation reveals that the multiple-backup shared protection strategy reduces unavailability by up to 64.8% compared to the single-backup shared protection strategy in the examined allocation cases.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.