基于自跟踪光栅干涉仪的超高线性MOEMS加速度计

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhikun Chang;Song Song;Pengfei Niu;Guangxu Xiao;Zichao Lin;Chunling He;Xiao Deng;Dongbai Xue;Yuying Xie;Xinbin Cheng;Tongbao Li
{"title":"基于自跟踪光栅干涉仪的超高线性MOEMS加速度计","authors":"Zhikun Chang;Song Song;Pengfei Niu;Guangxu Xiao;Zichao Lin;Chunling He;Xiao Deng;Dongbai Xue;Yuying Xie;Xinbin Cheng;Tongbao Li","doi":"10.1109/JSEN.2025.3551274","DOIUrl":null,"url":null,"abstract":"The linearity of the accelerometer directly affects its measurement accuracy and applicability, making it a key metric in the development of high-performance accelerometers. In response, this article proposes an ultrahigh-linearity MOEMS accelerometer based on a self-traceable grating (STG) interferometer. The accelerometer integrates an MEMS resonator with an STG interferometer based on chromium (Cr) atom transition frequency<sup>7</sup>S<inline-formula> <tex-math>${}_{{3}}\\to {}^{{7}}$ </tex-math></inline-formula> P<sub>4</sub>, enabling direct traceability of displacement to the International System of Units (SI) “meter.” Specifically, the average pitch of the Cr grating used is (212.781 ± 0.008) nm (<inline-formula> <tex-math>${k} = 2$ </tex-math></inline-formula>), showing outstanding uniformity and long-term stability. Furthermore, the compact interferometer design gives it an overall size of just <inline-formula> <tex-math>$7.5\\times 7.5\\times 2$ </tex-math></inline-formula> cm, facilitating portable measurements in practical applications. Experimental results show that the accelerometer achieves ultrahigh performance with a nonlinearity of 0.04%. The device also demonstrates a sensitivity of <inline-formula> <tex-math>$13.77~\\mu $ </tex-math></inline-formula>m/g within a measurement range of ±1.6 g, with a noise floor of <inline-formula> <tex-math>$9.6\\times 10^{\\text {-7}}$ </tex-math></inline-formula> g/<inline-formula> <tex-math>$\\surd $ </tex-math></inline-formula>Hz. The integration of STG technology with the MEMS resonator offers a scalable solution for high precision, field-deployable accelerometer measurements, greatly improving measurement linearity and traceability.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 9","pages":"15914-15922"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ultrahigh-Linearity MOEMS Accelerometer Based on a Self-Traceable Grating Interferometer\",\"authors\":\"Zhikun Chang;Song Song;Pengfei Niu;Guangxu Xiao;Zichao Lin;Chunling He;Xiao Deng;Dongbai Xue;Yuying Xie;Xinbin Cheng;Tongbao Li\",\"doi\":\"10.1109/JSEN.2025.3551274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linearity of the accelerometer directly affects its measurement accuracy and applicability, making it a key metric in the development of high-performance accelerometers. In response, this article proposes an ultrahigh-linearity MOEMS accelerometer based on a self-traceable grating (STG) interferometer. The accelerometer integrates an MEMS resonator with an STG interferometer based on chromium (Cr) atom transition frequency<sup>7</sup>S<inline-formula> <tex-math>${}_{{3}}\\\\to {}^{{7}}$ </tex-math></inline-formula> P<sub>4</sub>, enabling direct traceability of displacement to the International System of Units (SI) “meter.” Specifically, the average pitch of the Cr grating used is (212.781 ± 0.008) nm (<inline-formula> <tex-math>${k} = 2$ </tex-math></inline-formula>), showing outstanding uniformity and long-term stability. Furthermore, the compact interferometer design gives it an overall size of just <inline-formula> <tex-math>$7.5\\\\times 7.5\\\\times 2$ </tex-math></inline-formula> cm, facilitating portable measurements in practical applications. Experimental results show that the accelerometer achieves ultrahigh performance with a nonlinearity of 0.04%. The device also demonstrates a sensitivity of <inline-formula> <tex-math>$13.77~\\\\mu $ </tex-math></inline-formula>m/g within a measurement range of ±1.6 g, with a noise floor of <inline-formula> <tex-math>$9.6\\\\times 10^{\\\\text {-7}}$ </tex-math></inline-formula> g/<inline-formula> <tex-math>$\\\\surd $ </tex-math></inline-formula>Hz. The integration of STG technology with the MEMS resonator offers a scalable solution for high precision, field-deployable accelerometer measurements, greatly improving measurement linearity and traceability.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 9\",\"pages\":\"15914-15922\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938006/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10938006/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

加速度计的线性度直接影响其测量精度和适用性,是研制高性能加速度计的关键指标。为此,本文提出了一种基于自跟踪光栅(STG)干涉仪的超高线性MOEMS加速度计。加速度计集成了MEMS谐振器和基于铬(Cr)原子跃迁频率7s ${}_{{3}}\到{}^{{7}}$ P4的STG干涉仪,可以直接跟踪位移到国际单位制(SI)“米”。具体而言,所使用的Cr光栅的平均间距为(212.781±0.008)nm (${k} = 2$),具有出色的均匀性和长期稳定性。此外,紧凑的干涉仪设计使其整体尺寸仅为7.5 × 7.5 × 2 cm,便于在实际应用中进行便携式测量。实验结果表明,该加速度计的非线性为0.04%,实现了超高的性能。在±1.6 g的测量范围内,该器件的灵敏度为$13.77~\mu $ m/g,本底噪声为$9.6\乘以10^{\text {-7}}$ g/ $ $ surd $ Hz。STG技术与MEMS谐振器的集成为高精度、可现场部署的加速度计测量提供了可扩展的解决方案,大大提高了测量线性度和可追溯性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ultrahigh-Linearity MOEMS Accelerometer Based on a Self-Traceable Grating Interferometer
The linearity of the accelerometer directly affects its measurement accuracy and applicability, making it a key metric in the development of high-performance accelerometers. In response, this article proposes an ultrahigh-linearity MOEMS accelerometer based on a self-traceable grating (STG) interferometer. The accelerometer integrates an MEMS resonator with an STG interferometer based on chromium (Cr) atom transition frequency7S ${}_{{3}}\to {}^{{7}}$ P4, enabling direct traceability of displacement to the International System of Units (SI) “meter.” Specifically, the average pitch of the Cr grating used is (212.781 ± 0.008) nm ( ${k} = 2$ ), showing outstanding uniformity and long-term stability. Furthermore, the compact interferometer design gives it an overall size of just $7.5\times 7.5\times 2$ cm, facilitating portable measurements in practical applications. Experimental results show that the accelerometer achieves ultrahigh performance with a nonlinearity of 0.04%. The device also demonstrates a sensitivity of $13.77~\mu $ m/g within a measurement range of ±1.6 g, with a noise floor of $9.6\times 10^{\text {-7}}$ g/ $\surd $ Hz. The integration of STG technology with the MEMS resonator offers a scalable solution for high precision, field-deployable accelerometer measurements, greatly improving measurement linearity and traceability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信