基于PCA + SVR解调的级联空心光纤传感器大范围曲率测量

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Junhua Luo;Shuqin Lou;Jiaqi Cao;Ang Liu;Yuying Guo;Zixia Wang;Xin Wang;Xinzhi Sheng
{"title":"基于PCA + SVR解调的级联空心光纤传感器大范围曲率测量","authors":"Junhua Luo;Shuqin Lou;Jiaqi Cao;Ang Liu;Yuying Guo;Zixia Wang;Xin Wang;Xinzhi Sheng","doi":"10.1109/JSEN.2025.3553621","DOIUrl":null,"url":null,"abstract":"A novel sensor structure composed of a negative curvature hollow-core fiber and a hollow-core fiber is proposed. The highest sensitivity with respect to wavelength reaches 11.21 nm/m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula> in the curvature range from 2.37 to 4.49 m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>, while that with respect to transmission intensity is 11.01 dB/m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula> in the curvature range from 6.82 to 7.62 m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>. To expand the curvature measurement range, the support vector regression algorithm is introduced for the prediction of curvature by training and learning the transmission spectra. Combining with the principal component analysis algorithm, which is used for data dimensions reduction, high prediction accuracy can be realized in a large curvature measurement range. The experimental results demonstrate that the mean absolute error and mean squared error for the predicted curvature are as low as <inline-formula> <tex-math>$1.75\\times 10^{-{3}}$ </tex-math></inline-formula> m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$4.98\\times 10^{-{6}}$ </tex-math></inline-formula>, respectively, within the curvature range from 0 to 12.78 m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>. The prediction time is just 0.223 s to predict all 128 curvatures within the measurement range. Moreover, the prediction efficiency could be further improved, as the high prediction accuracy can be maintained even if the sampling rate of the spectra is reduced.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 9","pages":"15136-15142"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Range Curvature Measurement Based on a Cascaded Hollow-Core Fiber Sensor Combining With a PCA + SVR Demodulation Algorithm\",\"authors\":\"Junhua Luo;Shuqin Lou;Jiaqi Cao;Ang Liu;Yuying Guo;Zixia Wang;Xin Wang;Xinzhi Sheng\",\"doi\":\"10.1109/JSEN.2025.3553621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel sensor structure composed of a negative curvature hollow-core fiber and a hollow-core fiber is proposed. The highest sensitivity with respect to wavelength reaches 11.21 nm/m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula> in the curvature range from 2.37 to 4.49 m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>, while that with respect to transmission intensity is 11.01 dB/m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula> in the curvature range from 6.82 to 7.62 m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>. To expand the curvature measurement range, the support vector regression algorithm is introduced for the prediction of curvature by training and learning the transmission spectra. Combining with the principal component analysis algorithm, which is used for data dimensions reduction, high prediction accuracy can be realized in a large curvature measurement range. The experimental results demonstrate that the mean absolute error and mean squared error for the predicted curvature are as low as <inline-formula> <tex-math>$1.75\\\\times 10^{-{3}}$ </tex-math></inline-formula> m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$4.98\\\\times 10^{-{6}}$ </tex-math></inline-formula>, respectively, within the curvature range from 0 to 12.78 m<inline-formula> <tex-math>${}^{-{1}}$ </tex-math></inline-formula>. The prediction time is just 0.223 s to predict all 128 curvatures within the measurement range. Moreover, the prediction efficiency could be further improved, as the high prediction accuracy can be maintained even if the sampling rate of the spectra is reduced.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 9\",\"pages\":\"15136-15142\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10944277/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10944277/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种由负曲率空心光纤和空心光纤组成的新型传感器结构。在2.37 ~ 4.49 m ${}^{-{1}}$范围内,对波长的最高灵敏度为11.21 nm/m ${}^{-{1}}$;在6.82 ~ 7.62 m ${}^{-{1}}$范围内,对透射强度的最高灵敏度为11.01 dB/m ${}^{-{1}}$。为了扩大曲率测量范围,引入支持向量回归算法,通过训练和学习透射谱来预测曲率。结合主成分分析算法进行数据降维,可以在大曲率测量范围内实现较高的预测精度。实验结果表明,在0 ~ 12.78 m ${}^{-{1}}$范围内,预测曲率的平均绝对误差和均方误差分别低至$1.75\乘以10^{-{3}}$ m ${}^{-{1}}$和$4.98\乘以10^{-{6}}$。预测时间仅为0.223 s,可以预测测量范围内所有128个曲率。进一步提高了预测效率,即使降低光谱采样率也能保持较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Range Curvature Measurement Based on a Cascaded Hollow-Core Fiber Sensor Combining With a PCA + SVR Demodulation Algorithm
A novel sensor structure composed of a negative curvature hollow-core fiber and a hollow-core fiber is proposed. The highest sensitivity with respect to wavelength reaches 11.21 nm/m ${}^{-{1}}$ in the curvature range from 2.37 to 4.49 m ${}^{-{1}}$ , while that with respect to transmission intensity is 11.01 dB/m ${}^{-{1}}$ in the curvature range from 6.82 to 7.62 m ${}^{-{1}}$ . To expand the curvature measurement range, the support vector regression algorithm is introduced for the prediction of curvature by training and learning the transmission spectra. Combining with the principal component analysis algorithm, which is used for data dimensions reduction, high prediction accuracy can be realized in a large curvature measurement range. The experimental results demonstrate that the mean absolute error and mean squared error for the predicted curvature are as low as $1.75\times 10^{-{3}}$ m ${}^{-{1}}$ and $4.98\times 10^{-{6}}$ , respectively, within the curvature range from 0 to 12.78 m ${}^{-{1}}$ . The prediction time is just 0.223 s to predict all 128 curvatures within the measurement range. Moreover, the prediction efficiency could be further improved, as the high prediction accuracy can be maintained even if the sampling rate of the spectra is reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信