使用能量采集器和光学探测器的ml辅助二维室内定位,用于自供电光基础物联网传感器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Amila Perera;Khojiakbar Botirov;Hazem Sallouha;Marcos Katz
{"title":"使用能量采集器和光学探测器的ml辅助二维室内定位,用于自供电光基础物联网传感器","authors":"Amila Perera;Khojiakbar Botirov;Hazem Sallouha;Marcos Katz","doi":"10.1109/JSEN.2025.3552905","DOIUrl":null,"url":null,"abstract":"Advancements in 6G and IoT sensor networks prioritize sustainability and energy efficiency, with positioning services essential for improved functionality. Light-based IoT (LIoT) systems present a promising solution by achieving energy autonomy through photovoltaic (PV) energy harvesting (EH) and enabling visible light communication (VLC) via indoor luminaries as optical access points (OAPs). This research explores the repurposing of energy harvesters at LIoT nodes and detectors at OAPs for positioning and orientation detection in energy-autonomous, battery-free, intermittently operating LIoT sensor networks. We propose potential node and OAP designs, validated by proof-of-concept prototypes, utilizing conventional machine learning (ML) and deep neural networks (DNNs) to enhance localization. Performance evaluations demonstrate 80% positioning accuracy within 12.5-cm tolerance and 68% orientation prediction accuracy. This approach allows LIoT devices to communicate, harvest energy, and determine their position and orientation using the same illumination from OAPs, underscoring the potential of this LIoT-based system as a sustainable solution for next-generation IoT sensors.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 9","pages":"15958-15967"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944259","citationCount":"0","resultStr":"{\"title\":\"ML-Aided 2-D Indoor Positioning Using Energy Harvesters and Optical Detectors for Self-Powered Light-Based IoT Sensors\",\"authors\":\"Amila Perera;Khojiakbar Botirov;Hazem Sallouha;Marcos Katz\",\"doi\":\"10.1109/JSEN.2025.3552905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in 6G and IoT sensor networks prioritize sustainability and energy efficiency, with positioning services essential for improved functionality. Light-based IoT (LIoT) systems present a promising solution by achieving energy autonomy through photovoltaic (PV) energy harvesting (EH) and enabling visible light communication (VLC) via indoor luminaries as optical access points (OAPs). This research explores the repurposing of energy harvesters at LIoT nodes and detectors at OAPs for positioning and orientation detection in energy-autonomous, battery-free, intermittently operating LIoT sensor networks. We propose potential node and OAP designs, validated by proof-of-concept prototypes, utilizing conventional machine learning (ML) and deep neural networks (DNNs) to enhance localization. Performance evaluations demonstrate 80% positioning accuracy within 12.5-cm tolerance and 68% orientation prediction accuracy. This approach allows LIoT devices to communicate, harvest energy, and determine their position and orientation using the same illumination from OAPs, underscoring the potential of this LIoT-based system as a sustainable solution for next-generation IoT sensors.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 9\",\"pages\":\"15958-15967\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944259\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10944259/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10944259/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

6G和物联网传感器网络的进步优先考虑可持续性和能源效率,定位服务对于改进功能至关重要。基于光的物联网(LIoT)系统通过光伏(PV)能量收集(EH)实现能量自主,并通过室内灯具作为光学接入点(oap)实现可见光通信(VLC),提供了一种很有前途的解决方案。本研究探讨了在能量自主、无电池、间歇运行的LIoT传感器网络中,LIoT节点上的能量收集器和oap上的探测器的定位和方向检测的再利用。我们提出了潜在的节点和OAP设计,通过概念验证原型验证,利用传统的机器学习(ML)和深度神经网络(dnn)来增强定位。性能评估表明,在12.5 cm公差范围内定位精度为80%,方向预测精度为68%。这种方法允许物联网设备使用来自oap的相同照明进行通信、收集能量并确定其位置和方向,强调了这种基于物联网的系统作为下一代物联网传感器可持续解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-Aided 2-D Indoor Positioning Using Energy Harvesters and Optical Detectors for Self-Powered Light-Based IoT Sensors
Advancements in 6G and IoT sensor networks prioritize sustainability and energy efficiency, with positioning services essential for improved functionality. Light-based IoT (LIoT) systems present a promising solution by achieving energy autonomy through photovoltaic (PV) energy harvesting (EH) and enabling visible light communication (VLC) via indoor luminaries as optical access points (OAPs). This research explores the repurposing of energy harvesters at LIoT nodes and detectors at OAPs for positioning and orientation detection in energy-autonomous, battery-free, intermittently operating LIoT sensor networks. We propose potential node and OAP designs, validated by proof-of-concept prototypes, utilizing conventional machine learning (ML) and deep neural networks (DNNs) to enhance localization. Performance evaluations demonstrate 80% positioning accuracy within 12.5-cm tolerance and 68% orientation prediction accuracy. This approach allows LIoT devices to communicate, harvest energy, and determine their position and orientation using the same illumination from OAPs, underscoring the potential of this LIoT-based system as a sustainable solution for next-generation IoT sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信