一种用于特征提取和冗余减少的电流模式乘累积宏

IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xu Ren;Xinpeng Li;Chang Xue;Yandong He;Gang Du
{"title":"一种用于特征提取和冗余减少的电流模式乘累积宏","authors":"Xu Ren;Xinpeng Li;Chang Xue;Yandong He;Gang Du","doi":"10.1109/TCSII.2025.3543173","DOIUrl":null,"url":null,"abstract":"This brief presents a current-mode sensing-computing fusion system for advanced Internet of Things (IoT) machine vision. The key contributions of our work are: (a) a low-voltage of 0.9V multiply-accumulate (MAC) computing macro with reconfigurable weights is proposed, enabling efficient on-sensor feature extraction; (b) a weight-flipping method for processing negative signals is employed, reducing both power consumption and circuit complexity; (c) a convolutional horizontal shifting technique with fixed weights is equipped, eliminating power consumption associated with weight updates. A <inline-formula> <tex-math>$16\\times 16$ </tex-math></inline-formula> CCIS prototype, fabricated using a 0.18<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m CMOS process, achieves a power efficiency of 27.7pJ/frame<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>pixel at 2000fps. Experimental evaluations in edge feature extraction demonstrate a 32% reduction in power consumption, highlighting the efficiency gains of our approach.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 5","pages":"798-802"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Current-Mode Multiply-Accumulate Macro in Sensing-Computing Fusion System for Feature Extraction and Redundancy Reduction\",\"authors\":\"Xu Ren;Xinpeng Li;Chang Xue;Yandong He;Gang Du\",\"doi\":\"10.1109/TCSII.2025.3543173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief presents a current-mode sensing-computing fusion system for advanced Internet of Things (IoT) machine vision. The key contributions of our work are: (a) a low-voltage of 0.9V multiply-accumulate (MAC) computing macro with reconfigurable weights is proposed, enabling efficient on-sensor feature extraction; (b) a weight-flipping method for processing negative signals is employed, reducing both power consumption and circuit complexity; (c) a convolutional horizontal shifting technique with fixed weights is equipped, eliminating power consumption associated with weight updates. A <inline-formula> <tex-math>$16\\\\times 16$ </tex-math></inline-formula> CCIS prototype, fabricated using a 0.18<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m CMOS process, achieves a power efficiency of 27.7pJ/frame<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>pixel at 2000fps. Experimental evaluations in edge feature extraction demonstrate a 32% reduction in power consumption, highlighting the efficiency gains of our approach.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 5\",\"pages\":\"798-802\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891698/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891698/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于先进物联网(IoT)机器视觉的当前模式传感-计算融合系统。本文的主要贡献有:(a)提出了一种具有可重构权重的0.9V的低电压多重累积(MAC)计算宏,实现了有效的传感器上特征提取;(b)采用权重翻转法处理负信号,降低了功耗和电路复杂度;(c)配备了固定权值的卷积水平移位技术,消除了与权值更新相关的功耗。采用0.18 μ m CMOS工艺制作的16 × 16 CCIS原型机,在2000fps下实现了27.7pJ/frame $\cdot $ pixel的功率效率。边缘特征提取的实验评估表明,功耗降低了32%,突出了我们的方法的效率提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Current-Mode Multiply-Accumulate Macro in Sensing-Computing Fusion System for Feature Extraction and Redundancy Reduction
This brief presents a current-mode sensing-computing fusion system for advanced Internet of Things (IoT) machine vision. The key contributions of our work are: (a) a low-voltage of 0.9V multiply-accumulate (MAC) computing macro with reconfigurable weights is proposed, enabling efficient on-sensor feature extraction; (b) a weight-flipping method for processing negative signals is employed, reducing both power consumption and circuit complexity; (c) a convolutional horizontal shifting technique with fixed weights is equipped, eliminating power consumption associated with weight updates. A $16\times 16$ CCIS prototype, fabricated using a 0.18 $\mu $ m CMOS process, achieves a power efficiency of 27.7pJ/frame $\cdot $ pixel at 2000fps. Experimental evaluations in edge feature extraction demonstrate a 32% reduction in power consumption, highlighting the efficiency gains of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信