{"title":"一种用于特征提取和冗余减少的电流模式乘累积宏","authors":"Xu Ren;Xinpeng Li;Chang Xue;Yandong He;Gang Du","doi":"10.1109/TCSII.2025.3543173","DOIUrl":null,"url":null,"abstract":"This brief presents a current-mode sensing-computing fusion system for advanced Internet of Things (IoT) machine vision. The key contributions of our work are: (a) a low-voltage of 0.9V multiply-accumulate (MAC) computing macro with reconfigurable weights is proposed, enabling efficient on-sensor feature extraction; (b) a weight-flipping method for processing negative signals is employed, reducing both power consumption and circuit complexity; (c) a convolutional horizontal shifting technique with fixed weights is equipped, eliminating power consumption associated with weight updates. A <inline-formula> <tex-math>$16\\times 16$ </tex-math></inline-formula> CCIS prototype, fabricated using a 0.18<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m CMOS process, achieves a power efficiency of 27.7pJ/frame<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>pixel at 2000fps. Experimental evaluations in edge feature extraction demonstrate a 32% reduction in power consumption, highlighting the efficiency gains of our approach.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 5","pages":"798-802"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Current-Mode Multiply-Accumulate Macro in Sensing-Computing Fusion System for Feature Extraction and Redundancy Reduction\",\"authors\":\"Xu Ren;Xinpeng Li;Chang Xue;Yandong He;Gang Du\",\"doi\":\"10.1109/TCSII.2025.3543173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief presents a current-mode sensing-computing fusion system for advanced Internet of Things (IoT) machine vision. The key contributions of our work are: (a) a low-voltage of 0.9V multiply-accumulate (MAC) computing macro with reconfigurable weights is proposed, enabling efficient on-sensor feature extraction; (b) a weight-flipping method for processing negative signals is employed, reducing both power consumption and circuit complexity; (c) a convolutional horizontal shifting technique with fixed weights is equipped, eliminating power consumption associated with weight updates. A <inline-formula> <tex-math>$16\\\\times 16$ </tex-math></inline-formula> CCIS prototype, fabricated using a 0.18<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m CMOS process, achieves a power efficiency of 27.7pJ/frame<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>pixel at 2000fps. Experimental evaluations in edge feature extraction demonstrate a 32% reduction in power consumption, highlighting the efficiency gains of our approach.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 5\",\"pages\":\"798-802\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891698/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891698/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种用于先进物联网(IoT)机器视觉的当前模式传感-计算融合系统。本文的主要贡献有:(a)提出了一种具有可重构权重的0.9V的低电压多重累积(MAC)计算宏,实现了有效的传感器上特征提取;(b)采用权重翻转法处理负信号,降低了功耗和电路复杂度;(c)配备了固定权值的卷积水平移位技术,消除了与权值更新相关的功耗。采用0.18 μ m CMOS工艺制作的16 × 16 CCIS原型机,在2000fps下实现了27.7pJ/frame $\cdot $ pixel的功率效率。边缘特征提取的实验评估表明,功耗降低了32%,突出了我们的方法的效率提升。
A Current-Mode Multiply-Accumulate Macro in Sensing-Computing Fusion System for Feature Extraction and Redundancy Reduction
This brief presents a current-mode sensing-computing fusion system for advanced Internet of Things (IoT) machine vision. The key contributions of our work are: (a) a low-voltage of 0.9V multiply-accumulate (MAC) computing macro with reconfigurable weights is proposed, enabling efficient on-sensor feature extraction; (b) a weight-flipping method for processing negative signals is employed, reducing both power consumption and circuit complexity; (c) a convolutional horizontal shifting technique with fixed weights is equipped, eliminating power consumption associated with weight updates. A $16\times 16$ CCIS prototype, fabricated using a 0.18$\mu $ m CMOS process, achieves a power efficiency of 27.7pJ/frame$\cdot $ pixel at 2000fps. Experimental evaluations in edge feature extraction demonstrate a 32% reduction in power consumption, highlighting the efficiency gains of our approach.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.