变形驱动冶金法制备功能梯度AA7075- Al2O3复合材料

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Alireza Ramezani, Hamed Jamshidi Aval, Roohollah Jamaati
{"title":"变形驱动冶金法制备功能梯度AA7075- Al2O3复合材料","authors":"Alireza Ramezani,&nbsp;Hamed Jamshidi Aval,&nbsp;Roohollah Jamaati","doi":"10.1016/j.jcomc.2025.100599","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates tablehe microstructural evolution and mechanical performance of functionally graded AA7075-Al₂O₃ composites processed via the deformation driven metallurgy (DDM) technique. Microstructural analysis reveals a systematic grain refinement with increasing Al₂O₃ content, where the average grain size decreases from 10.2 ± 0.8 µm at 0 wt.% Al₂O₃ to 3.1 ± 0.6 µm at 32 wt.% Al₂O₃. This refinement is attributed to dynamic recrystallization (DRX) and particle-stimulated nucleation (PSN), facilitated by Al₂O₃ particles acting as nucleation sites. Mechanical testing demonstrates significant improvements in hardness and strength. Hardness values increase from 123.6 ± 3.4 HV₀.₁ in the unreinforced sample to 313.7 ± 8.2 HV₀.₁ at 32 wt.% Al₂O₃, while ultimate tensile strength (UTS) rises from 526.4 ± 12.5 MPa to 740.8 ± 10.1 MPa. However, this enhancement comes at the cost of ductility, with elongation decreasing from 12.7 ± 1.2 % to 4.6 ± 1.7 %. Fractographic analysis reveals a transition from ductile to brittle fracture with increasing reinforcement, driven by particle-induced stress concentrations. Tribological assessment shows superior wear resistance with higher Al₂O₃ content. The friction coefficient and wear rate decrease to 0.33 ± 0.03 and 3.8 ± 0.2 µg/m, respectively, at 32 wt.% Al₂O₃.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100599"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionally gradient AA7075- Al2O3 composites fabrication via deformation-driven metallurgy process\",\"authors\":\"Alireza Ramezani,&nbsp;Hamed Jamshidi Aval,&nbsp;Roohollah Jamaati\",\"doi\":\"10.1016/j.jcomc.2025.100599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates tablehe microstructural evolution and mechanical performance of functionally graded AA7075-Al₂O₃ composites processed via the deformation driven metallurgy (DDM) technique. Microstructural analysis reveals a systematic grain refinement with increasing Al₂O₃ content, where the average grain size decreases from 10.2 ± 0.8 µm at 0 wt.% Al₂O₃ to 3.1 ± 0.6 µm at 32 wt.% Al₂O₃. This refinement is attributed to dynamic recrystallization (DRX) and particle-stimulated nucleation (PSN), facilitated by Al₂O₃ particles acting as nucleation sites. Mechanical testing demonstrates significant improvements in hardness and strength. Hardness values increase from 123.6 ± 3.4 HV₀.₁ in the unreinforced sample to 313.7 ± 8.2 HV₀.₁ at 32 wt.% Al₂O₃, while ultimate tensile strength (UTS) rises from 526.4 ± 12.5 MPa to 740.8 ± 10.1 MPa. However, this enhancement comes at the cost of ductility, with elongation decreasing from 12.7 ± 1.2 % to 4.6 ± 1.7 %. Fractographic analysis reveals a transition from ductile to brittle fracture with increasing reinforcement, driven by particle-induced stress concentrations. Tribological assessment shows superior wear resistance with higher Al₂O₃ content. The friction coefficient and wear rate decrease to 0.33 ± 0.03 and 3.8 ± 0.2 µg/m, respectively, at 32 wt.% Al₂O₃.</div></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"17 \",\"pages\":\"Article 100599\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682025000428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

研究了变形驱动冶金(DDM)技术制备的功能梯度AA7075-Al₂O₃复合材料的微观组织演变和力学性能。显微结构分析表明,随着Al₂O₃含量的增加,颗粒有系统的细化,平均晶粒尺寸从0 wt.% Al₂O₃时的10.2±0.8µm减小到32 wt.% Al₂O₃时的3.1±0.6µm。这种细化归因于动态再结晶(DRX)和颗粒刺激成核(PSN),由Al₂O₃颗粒作为成核位点促进。机械测试表明硬度和强度有显著提高。硬度值从123.6±3.4 HV 0增加。在未加强的样品中,1为313.7±8.2 HV 0。在32 wt.% Al₂O₃,而极限拉伸强度(UTS)从526.4±12.5 MPa上升到740.8±10.1 MPa。然而,这种增强是以牺牲延展性为代价的,伸长率从12.7±1.2%下降到4.6±1.7%。断口分析表明,随着增强强度的增加,由颗粒诱导的应力集中驱动,从韧性断裂向脆性断裂转变。摩擦学评估表明,Al₂O₃含量越高,耐磨性越好。当Al₂O₃重量为32 wt.%时,摩擦系数和磨损率分别降至0.33±0.03µg/m和3.8±0.2µg/m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functionally gradient AA7075- Al2O3 composites fabrication via deformation-driven metallurgy process
This study investigates tablehe microstructural evolution and mechanical performance of functionally graded AA7075-Al₂O₃ composites processed via the deformation driven metallurgy (DDM) technique. Microstructural analysis reveals a systematic grain refinement with increasing Al₂O₃ content, where the average grain size decreases from 10.2 ± 0.8 µm at 0 wt.% Al₂O₃ to 3.1 ± 0.6 µm at 32 wt.% Al₂O₃. This refinement is attributed to dynamic recrystallization (DRX) and particle-stimulated nucleation (PSN), facilitated by Al₂O₃ particles acting as nucleation sites. Mechanical testing demonstrates significant improvements in hardness and strength. Hardness values increase from 123.6 ± 3.4 HV₀.₁ in the unreinforced sample to 313.7 ± 8.2 HV₀.₁ at 32 wt.% Al₂O₃, while ultimate tensile strength (UTS) rises from 526.4 ± 12.5 MPa to 740.8 ± 10.1 MPa. However, this enhancement comes at the cost of ductility, with elongation decreasing from 12.7 ± 1.2 % to 4.6 ± 1.7 %. Fractographic analysis reveals a transition from ductile to brittle fracture with increasing reinforcement, driven by particle-induced stress concentrations. Tribological assessment shows superior wear resistance with higher Al₂O₃ content. The friction coefficient and wear rate decrease to 0.33 ± 0.03 and 3.8 ± 0.2 µg/m, respectively, at 32 wt.% Al₂O₃.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信