论先验在贝叶斯因果学习中的作用

Bernhard C. Geiger;Roman Kern
{"title":"论先验在贝叶斯因果学习中的作用","authors":"Bernhard C. Geiger;Roman Kern","doi":"10.1109/TAI.2024.3522867","DOIUrl":null,"url":null,"abstract":"In this work, we investigate causal learning of independent causal mechanisms (ICMs) from a Bayesian perspective. Confirming previous claims from the literature, we show in a didactically accessible manner that unlabeled data (i.e., cause realizations) do not improve the estimation of the parameters defining the mechanism. Furthermore, we observe the importance of choosing an appropriate prior for the cause and mechanism parameters, respectively. Specifically, we show that a factorized prior results in a factorized posterior, which resonates with Janzing and Schölkopf's definition of ICMs via the Kolmogorov complexity of the involved distributions and with the concept of parameter independence of Heckerman et al.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 5","pages":"1439-1445"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Role of Priors in Bayesian Causal Learning\",\"authors\":\"Bernhard C. Geiger;Roman Kern\",\"doi\":\"10.1109/TAI.2024.3522867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate causal learning of independent causal mechanisms (ICMs) from a Bayesian perspective. Confirming previous claims from the literature, we show in a didactically accessible manner that unlabeled data (i.e., cause realizations) do not improve the estimation of the parameters defining the mechanism. Furthermore, we observe the importance of choosing an appropriate prior for the cause and mechanism parameters, respectively. Specifically, we show that a factorized prior results in a factorized posterior, which resonates with Janzing and Schölkopf's definition of ICMs via the Kolmogorov complexity of the involved distributions and with the concept of parameter independence of Heckerman et al.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 5\",\"pages\":\"1439-1445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816320/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816320/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们从贝叶斯的角度研究了独立因果机制(ICMs)的因果学习。确认先前文献的说法,我们以一种教学可访问的方式显示,未标记的数据(即,原因实现)并不能改善对定义机制的参数的估计。此外,我们观察到分别为原因和机制参数选择合适的先验的重要性。具体来说,我们证明了一个被分解的先验会导致一个被分解的后验,这与Janzing和Schölkopf通过所涉及分布的Kolmogorov复杂度对icm的定义以及Heckerman等人的参数独立性概念相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Role of Priors in Bayesian Causal Learning
In this work, we investigate causal learning of independent causal mechanisms (ICMs) from a Bayesian perspective. Confirming previous claims from the literature, we show in a didactically accessible manner that unlabeled data (i.e., cause realizations) do not improve the estimation of the parameters defining the mechanism. Furthermore, we observe the importance of choosing an appropriate prior for the cause and mechanism parameters, respectively. Specifically, we show that a factorized prior results in a factorized posterior, which resonates with Janzing and Schölkopf's definition of ICMs via the Kolmogorov complexity of the involved distributions and with the concept of parameter independence of Heckerman et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信