焙烧温度对锌离子电池正极材料ZnMn2O4储锌性能的影响

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Haiyan Chen , Jinhuan Yao , Jiqiong Jiang , Wenhan Xu , Shunhua Xiao , Yanwei Li
{"title":"焙烧温度对锌离子电池正极材料ZnMn2O4储锌性能的影响","authors":"Haiyan Chen ,&nbsp;Jinhuan Yao ,&nbsp;Jiqiong Jiang ,&nbsp;Wenhan Xu ,&nbsp;Shunhua Xiao ,&nbsp;Yanwei Li","doi":"10.1016/j.jpcs.2025.112824","DOIUrl":null,"url":null,"abstract":"<div><div>ZnMn<sub>2</sub>O<sub>4</sub> is a promising cathode material for aqueous zinc-ion batteries owing to its high voltage and eco-friendliness. This study synthesizes ZnMn<sub>2</sub>O<sub>4</sub> via coprecipitation and calcination (600–900 °C), investigating temperature effects on structure and performance. Increasing calcination temperature enhances crystallinity and particle size, with optimal results at 800 °C. The ZMO-800 sample exhibits uniform 50–100 nm nanoparticles forming a porous architecture, delivering superior zinc storage: 124.8 mAh g<sup>−1</sup> after 1000 cycles at 1.0 A g<sup>−1</sup> (88.7 % retention) and 136 mAh g<sup>−1</sup> at 3.0 A g<sup>−1</sup>. Enhanced performance stems from improved crystallinity, nanoscale particles, and high surface area. Mechanism analysis via CV, EIS, GITT, and ex-situ XRD/Raman/SEM reveals stable electrochemical behavior. This work provides a simple strategy to optimize ZnMn<sub>2</sub>O<sub>4</sub> cathodes for high-performance ZIBs.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112824"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of calcination temperature on the zinc storage performance of ZnMn2O4 as a cathode material for zinc-ion batteries\",\"authors\":\"Haiyan Chen ,&nbsp;Jinhuan Yao ,&nbsp;Jiqiong Jiang ,&nbsp;Wenhan Xu ,&nbsp;Shunhua Xiao ,&nbsp;Yanwei Li\",\"doi\":\"10.1016/j.jpcs.2025.112824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ZnMn<sub>2</sub>O<sub>4</sub> is a promising cathode material for aqueous zinc-ion batteries owing to its high voltage and eco-friendliness. This study synthesizes ZnMn<sub>2</sub>O<sub>4</sub> via coprecipitation and calcination (600–900 °C), investigating temperature effects on structure and performance. Increasing calcination temperature enhances crystallinity and particle size, with optimal results at 800 °C. The ZMO-800 sample exhibits uniform 50–100 nm nanoparticles forming a porous architecture, delivering superior zinc storage: 124.8 mAh g<sup>−1</sup> after 1000 cycles at 1.0 A g<sup>−1</sup> (88.7 % retention) and 136 mAh g<sup>−1</sup> at 3.0 A g<sup>−1</sup>. Enhanced performance stems from improved crystallinity, nanoscale particles, and high surface area. Mechanism analysis via CV, EIS, GITT, and ex-situ XRD/Raman/SEM reveals stable electrochemical behavior. This work provides a simple strategy to optimize ZnMn<sub>2</sub>O<sub>4</sub> cathodes for high-performance ZIBs.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"205 \",\"pages\":\"Article 112824\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725002768\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002768","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

ZnMn2O4具有高电压、环保等优点,是一种很有前途的水性锌离子电池正极材料。本研究采用共沉淀法和煅烧法(600 ~ 900℃)合成了ZnMn2O4,考察了温度对其结构和性能的影响。提高煅烧温度可以提高结晶度和粒度,在800℃时效果最佳。ZMO-800样品具有均匀的50-100 nm纳米颗粒,形成多孔结构,提供卓越的锌存储:在1.0 ag - 1下循环1000次后124.8 mAh g - 1(保留88.7%)和在3.0 ag - 1下136 mAh g - 1。增强的性能源于改进的结晶度、纳米级颗粒和高表面积。通过CV, EIS, GITT和非原位XRD/Raman/SEM对其机理进行了分析,发现其具有稳定的电化学行为。这项工作提供了一种简单的策略来优化高性能ZIBs的ZnMn2O4阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of calcination temperature on the zinc storage performance of ZnMn2O4 as a cathode material for zinc-ion batteries

Influence of calcination temperature on the zinc storage performance of ZnMn2O4 as a cathode material for zinc-ion batteries
ZnMn2O4 is a promising cathode material for aqueous zinc-ion batteries owing to its high voltage and eco-friendliness. This study synthesizes ZnMn2O4 via coprecipitation and calcination (600–900 °C), investigating temperature effects on structure and performance. Increasing calcination temperature enhances crystallinity and particle size, with optimal results at 800 °C. The ZMO-800 sample exhibits uniform 50–100 nm nanoparticles forming a porous architecture, delivering superior zinc storage: 124.8 mAh g−1 after 1000 cycles at 1.0 A g−1 (88.7 % retention) and 136 mAh g−1 at 3.0 A g−1. Enhanced performance stems from improved crystallinity, nanoscale particles, and high surface area. Mechanism analysis via CV, EIS, GITT, and ex-situ XRD/Raman/SEM reveals stable electrochemical behavior. This work provides a simple strategy to optimize ZnMn2O4 cathodes for high-performance ZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信