Michael Sidebottom , Lee Margetts , Mostafa R.A. Nabawy
{"title":"微型昆虫飞行的空气动力学","authors":"Michael Sidebottom , Lee Margetts , Mostafa R.A. Nabawy","doi":"10.1016/j.paerosci.2025.101081","DOIUrl":null,"url":null,"abstract":"<div><div>The smallest example of powered flight currently known to humans is that of miniature insects, with wing lengths typically no greater than 1 mm. Flight in this domain is characterised by Reynolds numbers of the order of 10, meaning that viscous flow effects are more pronounced and, consequently, representative lift-to-drag ratios are significantly low. Most notably, at miniature scales, there is a transition from insects with wings made of continuous membranes to wings predominantly made up of bristled appendages. Yet, there remains very little understanding of how the structural arrangement of bristled wings interacts with the aerodynamics. In addition to their unique wing morphologies, the wing kinematics employed by miniature insects are also distinct. While flight is classically characterised via a lift force as the primary component for counteracting weight, miniature insects use swimming-like flapping profiles in which drag plays a distinctly more pronounced role in opposing gravity. Relative to the broader field of insect aerodynamics, the miniature domain has only recently begun to receive widespread attention from aerodynamicists, yet developing our understanding in the miniature field provides an opportunity to advance our capacity to inform the future design of miniature flying robots. To that end, the purpose of this review is to collate together the progress made thus far, in order to generate a perspective with regards to our current understanding of flight in the miniature domain.</div></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"154 ","pages":"Article 101081"},"PeriodicalIF":11.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The aerodynamics of miniature insect flight\",\"authors\":\"Michael Sidebottom , Lee Margetts , Mostafa R.A. Nabawy\",\"doi\":\"10.1016/j.paerosci.2025.101081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The smallest example of powered flight currently known to humans is that of miniature insects, with wing lengths typically no greater than 1 mm. Flight in this domain is characterised by Reynolds numbers of the order of 10, meaning that viscous flow effects are more pronounced and, consequently, representative lift-to-drag ratios are significantly low. Most notably, at miniature scales, there is a transition from insects with wings made of continuous membranes to wings predominantly made up of bristled appendages. Yet, there remains very little understanding of how the structural arrangement of bristled wings interacts with the aerodynamics. In addition to their unique wing morphologies, the wing kinematics employed by miniature insects are also distinct. While flight is classically characterised via a lift force as the primary component for counteracting weight, miniature insects use swimming-like flapping profiles in which drag plays a distinctly more pronounced role in opposing gravity. Relative to the broader field of insect aerodynamics, the miniature domain has only recently begun to receive widespread attention from aerodynamicists, yet developing our understanding in the miniature field provides an opportunity to advance our capacity to inform the future design of miniature flying robots. To that end, the purpose of this review is to collate together the progress made thus far, in order to generate a perspective with regards to our current understanding of flight in the miniature domain.</div></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"154 \",\"pages\":\"Article 101081\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042125000077\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042125000077","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
The smallest example of powered flight currently known to humans is that of miniature insects, with wing lengths typically no greater than 1 mm. Flight in this domain is characterised by Reynolds numbers of the order of 10, meaning that viscous flow effects are more pronounced and, consequently, representative lift-to-drag ratios are significantly low. Most notably, at miniature scales, there is a transition from insects with wings made of continuous membranes to wings predominantly made up of bristled appendages. Yet, there remains very little understanding of how the structural arrangement of bristled wings interacts with the aerodynamics. In addition to their unique wing morphologies, the wing kinematics employed by miniature insects are also distinct. While flight is classically characterised via a lift force as the primary component for counteracting weight, miniature insects use swimming-like flapping profiles in which drag plays a distinctly more pronounced role in opposing gravity. Relative to the broader field of insect aerodynamics, the miniature domain has only recently begun to receive widespread attention from aerodynamicists, yet developing our understanding in the miniature field provides an opportunity to advance our capacity to inform the future design of miniature flying robots. To that end, the purpose of this review is to collate together the progress made thus far, in order to generate a perspective with regards to our current understanding of flight in the miniature domain.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.