{"title":"动脉粥样硬化组织的钙化邻近区域硬度升高,但放射密度升高","authors":"Carly L. Donahue, Victor H. Barocas","doi":"10.1016/j.jmbbm.2025.107034","DOIUrl":null,"url":null,"abstract":"<div><div>Atherosclerosis, characterized by plaque accumulation and arterial remodeling, poses significant mechanical risks to the aorta such as wall stiffening, aneurysm formation, dissection, and plaque rupture. In this study, we investigated the mechanical and imaging properties of atherosclerotic lesions and their surrounding aortic media in 19 samples dissected from the thoracic aortas of human cadavers. Local stiffness was determined via inverse mechanical analysis of planar biaxial tensile tests, and radiodensity was assessed using micro-CT imaging. Our results show that calcifications are both more radiodense and stiffer than surrounding tissue, consistent with prior studies. However, radiodensity did not reliably predict stiffness in non-calcified regions, highlighting the limitations of micro-CT in capturing mechanical heterogeneity in softer tissues. Notably, we observed a significant stiffness gradient in tissue surrounding calcifications, with stiffness decreasing exponentially with distance. The calcification's biomechanical influence extended an estimated 5.40 ± 0.43 mm into the surrounding aortic media, despite the absence of significant radiodensity gradients in these regions. These findings suggest that calcifications serve as localized mechanical stress concentrators, influencing nearby tissue stiffness beyond their immediate boundary.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"168 ","pages":"Article 107034"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcification-neighboring regions of atherosclerotic aortic tissue exhibit elevated stiffness without elevated radiodensity\",\"authors\":\"Carly L. Donahue, Victor H. Barocas\",\"doi\":\"10.1016/j.jmbbm.2025.107034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atherosclerosis, characterized by plaque accumulation and arterial remodeling, poses significant mechanical risks to the aorta such as wall stiffening, aneurysm formation, dissection, and plaque rupture. In this study, we investigated the mechanical and imaging properties of atherosclerotic lesions and their surrounding aortic media in 19 samples dissected from the thoracic aortas of human cadavers. Local stiffness was determined via inverse mechanical analysis of planar biaxial tensile tests, and radiodensity was assessed using micro-CT imaging. Our results show that calcifications are both more radiodense and stiffer than surrounding tissue, consistent with prior studies. However, radiodensity did not reliably predict stiffness in non-calcified regions, highlighting the limitations of micro-CT in capturing mechanical heterogeneity in softer tissues. Notably, we observed a significant stiffness gradient in tissue surrounding calcifications, with stiffness decreasing exponentially with distance. The calcification's biomechanical influence extended an estimated 5.40 ± 0.43 mm into the surrounding aortic media, despite the absence of significant radiodensity gradients in these regions. These findings suggest that calcifications serve as localized mechanical stress concentrators, influencing nearby tissue stiffness beyond their immediate boundary.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"168 \",\"pages\":\"Article 107034\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175161612500150X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612500150X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Calcification-neighboring regions of atherosclerotic aortic tissue exhibit elevated stiffness without elevated radiodensity
Atherosclerosis, characterized by plaque accumulation and arterial remodeling, poses significant mechanical risks to the aorta such as wall stiffening, aneurysm formation, dissection, and plaque rupture. In this study, we investigated the mechanical and imaging properties of atherosclerotic lesions and their surrounding aortic media in 19 samples dissected from the thoracic aortas of human cadavers. Local stiffness was determined via inverse mechanical analysis of planar biaxial tensile tests, and radiodensity was assessed using micro-CT imaging. Our results show that calcifications are both more radiodense and stiffer than surrounding tissue, consistent with prior studies. However, radiodensity did not reliably predict stiffness in non-calcified regions, highlighting the limitations of micro-CT in capturing mechanical heterogeneity in softer tissues. Notably, we observed a significant stiffness gradient in tissue surrounding calcifications, with stiffness decreasing exponentially with distance. The calcification's biomechanical influence extended an estimated 5.40 ± 0.43 mm into the surrounding aortic media, despite the absence of significant radiodensity gradients in these regions. These findings suggest that calcifications serve as localized mechanical stress concentrators, influencing nearby tissue stiffness beyond their immediate boundary.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.