{"title":"采用生物质牺牲模板策略制备多孔NiCo2O4纳米片阵列作为非对称超级电容器电极材料","authors":"Chunyu Xu, Shining Zhang, Xiuyun Zhang, Shijie Ren, Chaoying Wang, Yajuan Jiang, Kunpeng Jiang, Guisheng Zhu, Yunyun Zhao, Huarui Xu","doi":"10.1016/j.materresbull.2025.113515","DOIUrl":null,"url":null,"abstract":"<div><div>Design of electrode materials with porous structure and unique micro-/nanostructure is efficient to improve asymmetric supercapacitors with high energy density and good cycle life. Herein, the study proposes a facile bio-templating method for the preparation of porous NiCo<sub>2</sub>O<sub>4</sub> nano-sheet arrays (NiCo<sub>2</sub>O<sub>4</sub> NSAs) electrode material using porous bagasse as a biomass sacrificial template. Owing to the unique micro/nano-structure, it exhibits a high specific capacitance of 1564 F g<sup>-1</sup> at 1 A g<sup>-1</sup> and an appreciable rate performance with a capacity retention of 81.8 % at 20 A g<sup>-1</sup>. Meanwhile, the fabricated NiCo<sub>2</sub>O<sub>4</sub> NSAs//activated carbon (AC) device exhibits an excellent energy density of 42.4 Wh kg<sup>-1</sup> at 799.9 W kg<sup>-1</sup>, and a good cycle performance with a capacitance retention of 89.9 % after 5000 cycles at 10 A <em>g</em><sup>−1</sup>, indicating that the prepared NiCo<sub>2</sub>O<sub>4</sub> NSAs can serve as a promising electrode material in practical supercapacitors.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113515"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous NiCo2O4 nano-sheet arrays prepared by biomass sacrificial template strategy as electrode material for asymmetric supercapacitors\",\"authors\":\"Chunyu Xu, Shining Zhang, Xiuyun Zhang, Shijie Ren, Chaoying Wang, Yajuan Jiang, Kunpeng Jiang, Guisheng Zhu, Yunyun Zhao, Huarui Xu\",\"doi\":\"10.1016/j.materresbull.2025.113515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Design of electrode materials with porous structure and unique micro-/nanostructure is efficient to improve asymmetric supercapacitors with high energy density and good cycle life. Herein, the study proposes a facile bio-templating method for the preparation of porous NiCo<sub>2</sub>O<sub>4</sub> nano-sheet arrays (NiCo<sub>2</sub>O<sub>4</sub> NSAs) electrode material using porous bagasse as a biomass sacrificial template. Owing to the unique micro/nano-structure, it exhibits a high specific capacitance of 1564 F g<sup>-1</sup> at 1 A g<sup>-1</sup> and an appreciable rate performance with a capacity retention of 81.8 % at 20 A g<sup>-1</sup>. Meanwhile, the fabricated NiCo<sub>2</sub>O<sub>4</sub> NSAs//activated carbon (AC) device exhibits an excellent energy density of 42.4 Wh kg<sup>-1</sup> at 799.9 W kg<sup>-1</sup>, and a good cycle performance with a capacitance retention of 89.9 % after 5000 cycles at 10 A <em>g</em><sup>−1</sup>, indicating that the prepared NiCo<sub>2</sub>O<sub>4</sub> NSAs can serve as a promising electrode material in practical supercapacitors.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"190 \",\"pages\":\"Article 113515\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825002235\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002235","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
多孔结构和独特的微纳结构电极材料的设计是提高非对称超级电容器高能量密度和良好循环寿命的有效途径。本研究提出了一种简便的生物模板法,以多孔甘蔗渣为生物质牺牲模板制备多孔NiCo2O4纳米片阵列(NiCo2O4 NSAs)电极材料。由于独特的微纳米结构,它在1 a g-1时具有1564 F -1的高比电容,在20 a g-1时具有81.8%的显着速率性能。同时,制备的NiCo2O4 NSAs//活性炭(AC)器件在799.9 W kg-1下的能量密度为42.4 Wh kg-1,在10 a g−1下循环5000次后的电容保持率为89.9%,具有良好的循环性能,表明制备的NiCo2O4 NSAs可作为实用超级电容器的电极材料。
Porous NiCo2O4 nano-sheet arrays prepared by biomass sacrificial template strategy as electrode material for asymmetric supercapacitors
Design of electrode materials with porous structure and unique micro-/nanostructure is efficient to improve asymmetric supercapacitors with high energy density and good cycle life. Herein, the study proposes a facile bio-templating method for the preparation of porous NiCo2O4 nano-sheet arrays (NiCo2O4 NSAs) electrode material using porous bagasse as a biomass sacrificial template. Owing to the unique micro/nano-structure, it exhibits a high specific capacitance of 1564 F g-1 at 1 A g-1 and an appreciable rate performance with a capacity retention of 81.8 % at 20 A g-1. Meanwhile, the fabricated NiCo2O4 NSAs//activated carbon (AC) device exhibits an excellent energy density of 42.4 Wh kg-1 at 799.9 W kg-1, and a good cycle performance with a capacitance retention of 89.9 % after 5000 cycles at 10 A g−1, indicating that the prepared NiCo2O4 NSAs can serve as a promising electrode material in practical supercapacitors.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.