{"title":"梯度Schouten孤子的刚性结果","authors":"Ilton Menezes","doi":"10.1016/j.geomphys.2025.105504","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider gradient Schouten solitons, conformal to an <em>n</em>-dimensional pseudo-Euclidean space and invariant under the action of an <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional translation group. We provide all such solutions and further, we prove that, in the Riemannian case, there does not exist a complete gradient Schouten Soliton that is conformal to Euclidean space and invariant to translation. Furthermore, we consider <em>ρ</em>-Einstein solitons of type <span><math><mi>M</mi><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mo>×</mo><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> is conformal to a pseudo-Euclidean space and invariant under the action of the pseudo-orthogonal group, and <span><math><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span> is an Einstein manifold. We provide all the solutions for the gradient Schouten soliton case, in the Riemannian case, we prove that if <span><math><mi>M</mi><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mo>×</mo><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span> is a complete gradient Schouten soliton, then <span><math><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> is isometric to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span> and <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is a compact Einstein manifold.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"214 ","pages":"Article 105504"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity results on gradient Schouten solitons\",\"authors\":\"Ilton Menezes\",\"doi\":\"10.1016/j.geomphys.2025.105504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider gradient Schouten solitons, conformal to an <em>n</em>-dimensional pseudo-Euclidean space and invariant under the action of an <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional translation group. We provide all such solutions and further, we prove that, in the Riemannian case, there does not exist a complete gradient Schouten Soliton that is conformal to Euclidean space and invariant to translation. Furthermore, we consider <em>ρ</em>-Einstein solitons of type <span><math><mi>M</mi><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mo>×</mo><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> is conformal to a pseudo-Euclidean space and invariant under the action of the pseudo-orthogonal group, and <span><math><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span> is an Einstein manifold. We provide all the solutions for the gradient Schouten soliton case, in the Riemannian case, we prove that if <span><math><mi>M</mi><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mo>×</mo><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span> is a complete gradient Schouten soliton, then <span><math><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> is isometric to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mi>R</mi></math></span> and <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is a compact Einstein manifold.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"214 \",\"pages\":\"Article 105504\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025000889\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025000889","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we consider gradient Schouten solitons, conformal to an n-dimensional pseudo-Euclidean space and invariant under the action of an -dimensional translation group. We provide all such solutions and further, we prove that, in the Riemannian case, there does not exist a complete gradient Schouten Soliton that is conformal to Euclidean space and invariant to translation. Furthermore, we consider ρ-Einstein solitons of type , where is conformal to a pseudo-Euclidean space and invariant under the action of the pseudo-orthogonal group, and is an Einstein manifold. We provide all the solutions for the gradient Schouten soliton case, in the Riemannian case, we prove that if is a complete gradient Schouten soliton, then is isometric to and is a compact Einstein manifold.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity