四价CuWO -海绵支架的仿生非均相N, s共掺杂3D碳-四价CuWO @Ag纳米结构,提高光催化效率和细胞活力

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Mojtaba Rostami , Alireza Badiei , Mahdi Fasihi-Ramandi , Hermann Ehrlich , Milad Jourshabani , Byeong–Kyu Lee , Ghodsi Mohammadi Ziarani , Mehdi Rahimi-Nasrabadi
{"title":"四价CuWO -海绵支架的仿生非均相N, s共掺杂3D碳-四价CuWO @Ag纳米结构,提高光催化效率和细胞活力","authors":"Mojtaba Rostami ,&nbsp;Alireza Badiei ,&nbsp;Mahdi Fasihi-Ramandi ,&nbsp;Hermann Ehrlich ,&nbsp;Milad Jourshabani ,&nbsp;Byeong–Kyu Lee ,&nbsp;Ghodsi Mohammadi Ziarani ,&nbsp;Mehdi Rahimi-Nasrabadi","doi":"10.1016/j.aej.2025.04.065","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the photodegradation process of Rhodamine B (RhB) and acetaminophen (ACE) using a novel N-S-codoped carbon microporous and three-dimensional (3D) architecture (NSC) derived from a spongin scaffold of poriferan origin. For the first time NSC-CuWO<sub>4</sub> was synthesized by converting a ready to use 3D microfibrous spongin scaffold through co-precipitation and in-situ pyrolysis. Subsequently, silver nanoparticles (Ag NPs) were incorporated to create the NSC-CuWO<sub>4</sub>@Ag hybrid material. The 3D architectural morphology and N-S-codoping of the material provided advantages in terms of high charge-separation efficiency, charge transfer, mass transfer, and optical absorption during the photoreaction. Under visible-light irradiation, NSC-CuWO<sub>4</sub>@Ag hybrid nanomaterial demonstrated excellent photocatalytic efficiency, degrading over 91 % of ACE and 97 % of RhB within 30 minutes. The photochemical tests revealed that electrons generated by irradiated CuWO<sub>4</sub>@Ag material transferred to the NSC microporous structure, facilitating the reduction of O<sub>2</sub> and the production of H<sub>2</sub>O<sub>2</sub> in an aqueous environment. This process significantly boosted the photocatalytic activity of CuWO<sub>4</sub>. The MTT assay indicated that NSC-CuWO₄@Ag nanoparticles (NPs) showed the highest cell viability. This is attributed to the silver NPs, which enhance biocompatibility and reduce the cytotoxic effects associated with carbonized spongin-derived NSC. This hybrid nanocomposite demonstrates excellent biocompatibility, making it a promising candidate for biomedical applications that require minimal cellular toxicity.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"126 ","pages":"Pages 393-407"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired heterogeneous N, S-codoped 3D carbon- CuWO₄@Ag nano-architecture from CuWO₄-spongin scaffold for boosting photocatalytic efficiency and cell viability\",\"authors\":\"Mojtaba Rostami ,&nbsp;Alireza Badiei ,&nbsp;Mahdi Fasihi-Ramandi ,&nbsp;Hermann Ehrlich ,&nbsp;Milad Jourshabani ,&nbsp;Byeong–Kyu Lee ,&nbsp;Ghodsi Mohammadi Ziarani ,&nbsp;Mehdi Rahimi-Nasrabadi\",\"doi\":\"10.1016/j.aej.2025.04.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the photodegradation process of Rhodamine B (RhB) and acetaminophen (ACE) using a novel N-S-codoped carbon microporous and three-dimensional (3D) architecture (NSC) derived from a spongin scaffold of poriferan origin. For the first time NSC-CuWO<sub>4</sub> was synthesized by converting a ready to use 3D microfibrous spongin scaffold through co-precipitation and in-situ pyrolysis. Subsequently, silver nanoparticles (Ag NPs) were incorporated to create the NSC-CuWO<sub>4</sub>@Ag hybrid material. The 3D architectural morphology and N-S-codoping of the material provided advantages in terms of high charge-separation efficiency, charge transfer, mass transfer, and optical absorption during the photoreaction. Under visible-light irradiation, NSC-CuWO<sub>4</sub>@Ag hybrid nanomaterial demonstrated excellent photocatalytic efficiency, degrading over 91 % of ACE and 97 % of RhB within 30 minutes. The photochemical tests revealed that electrons generated by irradiated CuWO<sub>4</sub>@Ag material transferred to the NSC microporous structure, facilitating the reduction of O<sub>2</sub> and the production of H<sub>2</sub>O<sub>2</sub> in an aqueous environment. This process significantly boosted the photocatalytic activity of CuWO<sub>4</sub>. The MTT assay indicated that NSC-CuWO₄@Ag nanoparticles (NPs) showed the highest cell viability. This is attributed to the silver NPs, which enhance biocompatibility and reduce the cytotoxic effects associated with carbonized spongin-derived NSC. This hybrid nanocomposite demonstrates excellent biocompatibility, making it a promising candidate for biomedical applications that require minimal cellular toxicity.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"126 \",\"pages\":\"Pages 393-407\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005617\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用一种新型的n - s共掺杂碳微孔和三维(3D)结构(NSC)研究了罗丹明B (RhB)和对乙酰氨基酚(ACE)的光降解过程。首次将可使用的三维微纤维海绵支架经共沉淀法和原位热解法转化合成了NSC-CuWO4。随后,银纳米颗粒(Ag NPs)被加入到NSC-CuWO4@Ag混合材料中。材料的三维结构形态和n -s共掺杂在光反应过程中具有较高的电荷分离效率、电荷转移、传质和光吸收等优点。在可见光照射下,NSC-CuWO4@Ag杂化纳米材料表现出优异的光催化效率,在30 分钟内降解了91% %的ACE和97% %的RhB。光化学实验表明,CuWO4@Ag材料辐照后产生的电子转移到NSC微孔结构中,促进了水环境中O2的还原和H2O2的生成。该工艺显著提高了CuWO4的光催化活性。MTT实验表明NSC-CuWO₄@Ag纳米颗粒(NPs)的细胞活力最高。这归因于银NPs,它增强了生物相容性并减少了与碳化海绵来源的NSC相关的细胞毒性作用。这种混合纳米复合材料表现出优异的生物相容性,使其成为生物医学应用的一个有希望的候选者,需要最小的细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired heterogeneous N, S-codoped 3D carbon- CuWO₄@Ag nano-architecture from CuWO₄-spongin scaffold for boosting photocatalytic efficiency and cell viability
This study investigated the photodegradation process of Rhodamine B (RhB) and acetaminophen (ACE) using a novel N-S-codoped carbon microporous and three-dimensional (3D) architecture (NSC) derived from a spongin scaffold of poriferan origin. For the first time NSC-CuWO4 was synthesized by converting a ready to use 3D microfibrous spongin scaffold through co-precipitation and in-situ pyrolysis. Subsequently, silver nanoparticles (Ag NPs) were incorporated to create the NSC-CuWO4@Ag hybrid material. The 3D architectural morphology and N-S-codoping of the material provided advantages in terms of high charge-separation efficiency, charge transfer, mass transfer, and optical absorption during the photoreaction. Under visible-light irradiation, NSC-CuWO4@Ag hybrid nanomaterial demonstrated excellent photocatalytic efficiency, degrading over 91 % of ACE and 97 % of RhB within 30 minutes. The photochemical tests revealed that electrons generated by irradiated CuWO4@Ag material transferred to the NSC microporous structure, facilitating the reduction of O2 and the production of H2O2 in an aqueous environment. This process significantly boosted the photocatalytic activity of CuWO4. The MTT assay indicated that NSC-CuWO₄@Ag nanoparticles (NPs) showed the highest cell viability. This is attributed to the silver NPs, which enhance biocompatibility and reduce the cytotoxic effects associated with carbonized spongin-derived NSC. This hybrid nanocomposite demonstrates excellent biocompatibility, making it a promising candidate for biomedical applications that require minimal cellular toxicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信