Jie Gao , Ding Wang , Xiaotong Zhang , Guojun Yang , Dongmei Xi , Xuqing Qin , Yanming Wang , Yu Jin , Yanli Guo , Xinzhi Li , Ketao Ma
{"title":"芹菜素通过调节TP53通路阻止高血压血管重构","authors":"Jie Gao , Ding Wang , Xiaotong Zhang , Guojun Yang , Dongmei Xi , Xuqing Qin , Yanming Wang , Yu Jin , Yanli Guo , Xinzhi Li , Ketao Ma","doi":"10.1016/j.intimp.2025.114706","DOIUrl":null,"url":null,"abstract":"<div><div>Vascular remodeling is a critical independent risk factor contributing to the increased incidence of cardiovascular events in hypertensive patients. Apigenin plays a pivotal role in hypertension protection. However, its impact on hypertension-induced vascular remodeling remains underexplored. This study investigates the protective effects and underlying mechanisms of apigenin on vascular remodeling in hypertension. In vivo experiments demonstrated that apigenin attenuated aortic remodeling in spontaneously hypertensive rats (SHRs). Treatment with apigenin resulted in a reduction in the mid-membrane thickness, vessel wall diameter, and wall-to-lumen ratio in the vascular cross-sections of SHRs. In vitro, angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation and migration were inhibited by apigenin. Western blot analysis revealed that apigenin downregulated the expression of Ang II-induced proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-9 (MMP9), and matrix metalloproteinase-2 (MMP2). Furthermore, apigenin induced cell cycle arrest at the G0/G1 phase by activating tumor protein p53 (TP53) in VSMCs. Network pharmacology and molecular docking identified TP53 as the key target through which apigenin mitigates hypertension-induced vascular remodeling. The TP53 inhibitor Pifithrin-α (PFT-α) reversed the inhibitory effects of apigenin on Ang II-induced VSMC proliferation and migration. In conclusion, apigenin mitigates hypertension-induced vascular remodeling, potentially by upregulating the TP53 pathway.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"157 ","pages":"Article 114706"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apigenin prevents hypertensive vascular remodeling by regulating the TP53 pathway\",\"authors\":\"Jie Gao , Ding Wang , Xiaotong Zhang , Guojun Yang , Dongmei Xi , Xuqing Qin , Yanming Wang , Yu Jin , Yanli Guo , Xinzhi Li , Ketao Ma\",\"doi\":\"10.1016/j.intimp.2025.114706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vascular remodeling is a critical independent risk factor contributing to the increased incidence of cardiovascular events in hypertensive patients. Apigenin plays a pivotal role in hypertension protection. However, its impact on hypertension-induced vascular remodeling remains underexplored. This study investigates the protective effects and underlying mechanisms of apigenin on vascular remodeling in hypertension. In vivo experiments demonstrated that apigenin attenuated aortic remodeling in spontaneously hypertensive rats (SHRs). Treatment with apigenin resulted in a reduction in the mid-membrane thickness, vessel wall diameter, and wall-to-lumen ratio in the vascular cross-sections of SHRs. In vitro, angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation and migration were inhibited by apigenin. Western blot analysis revealed that apigenin downregulated the expression of Ang II-induced proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-9 (MMP9), and matrix metalloproteinase-2 (MMP2). Furthermore, apigenin induced cell cycle arrest at the G0/G1 phase by activating tumor protein p53 (TP53) in VSMCs. Network pharmacology and molecular docking identified TP53 as the key target through which apigenin mitigates hypertension-induced vascular remodeling. The TP53 inhibitor Pifithrin-α (PFT-α) reversed the inhibitory effects of apigenin on Ang II-induced VSMC proliferation and migration. In conclusion, apigenin mitigates hypertension-induced vascular remodeling, potentially by upregulating the TP53 pathway.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"157 \",\"pages\":\"Article 114706\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576925006964\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925006964","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Apigenin prevents hypertensive vascular remodeling by regulating the TP53 pathway
Vascular remodeling is a critical independent risk factor contributing to the increased incidence of cardiovascular events in hypertensive patients. Apigenin plays a pivotal role in hypertension protection. However, its impact on hypertension-induced vascular remodeling remains underexplored. This study investigates the protective effects and underlying mechanisms of apigenin on vascular remodeling in hypertension. In vivo experiments demonstrated that apigenin attenuated aortic remodeling in spontaneously hypertensive rats (SHRs). Treatment with apigenin resulted in a reduction in the mid-membrane thickness, vessel wall diameter, and wall-to-lumen ratio in the vascular cross-sections of SHRs. In vitro, angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation and migration were inhibited by apigenin. Western blot analysis revealed that apigenin downregulated the expression of Ang II-induced proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-9 (MMP9), and matrix metalloproteinase-2 (MMP2). Furthermore, apigenin induced cell cycle arrest at the G0/G1 phase by activating tumor protein p53 (TP53) in VSMCs. Network pharmacology and molecular docking identified TP53 as the key target through which apigenin mitigates hypertension-induced vascular remodeling. The TP53 inhibitor Pifithrin-α (PFT-α) reversed the inhibitory effects of apigenin on Ang II-induced VSMC proliferation and migration. In conclusion, apigenin mitigates hypertension-induced vascular remodeling, potentially by upregulating the TP53 pathway.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.