一种新型CQDs@AgNPs@ cs纳米复合材料的抗菌和伤口愈合效果增强:一种用于高级伤口护理的多功能方法

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sanae El Ghacham , Lamia Hejji , Youssef Aoulad El Hadj Ali , Anass Wahby , Lahcen Tamegart , Luis Pérez-Villarejo , Zakaria Mennane , Badredine Souhail , Abdelmonaim Azzouz
{"title":"一种新型CQDs@AgNPs@ cs纳米复合材料的抗菌和伤口愈合效果增强:一种用于高级伤口护理的多功能方法","authors":"Sanae El Ghacham ,&nbsp;Lamia Hejji ,&nbsp;Youssef Aoulad El Hadj Ali ,&nbsp;Anass Wahby ,&nbsp;Lahcen Tamegart ,&nbsp;Luis Pérez-Villarejo ,&nbsp;Zakaria Mennane ,&nbsp;Badredine Souhail ,&nbsp;Abdelmonaim Azzouz","doi":"10.1016/j.ijbiomac.2025.143621","DOIUrl":null,"url":null,"abstract":"<div><div>Wound healing, particularly in the presence of bacterial infections, remains a significant challenge in clinical settings. This study explores the synthesis and characterization of carbon quantum dots (CQDs), silver nanoparticles (AgNPs), and chitosan (CS), designated as CQDs@AgNPs@CS nanocomposites. The primary aim is to evaluate its wound healing efficacy and antibacterial activity. An <em>in vivo</em> incisional wound model in mice is utilized alongside <em>in vitro</em> assessments against clinically relevant Gram-positive (<em>Staphylococcus aureus</em>) and Gram-negative (<em>Escherichia coli</em>, <em>Acinetobacter baumannii</em>, and <em>Klebsiella pneumoniae</em>) bacteria strains. The nanocomposites are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, zeta potential analysis, and Scanning electron microscopy to confirm its structural integrity and functional properties. Preliminary results indicate that the CQDs@AgNPs@CS nanocomposites significantly enhance wound healing and demonstrate potent antibacterial activity, with minimum bactericidal concentrations and minimum inhibitory concentrations ranging from 0.234 to 7.5 mg/mL. Histological analysis indicates that wounds treated with the CQDs@AgNPs@CS nanocomposites exhibit accelerated re-epithelialization, improved wound repair, and a reduced inflammatory response, as evidenced by decreased neutrophil counts in the skin tissue, compared to untreated wounds and those treated with individual components (CQDs, AgNPs, CS) as well as the CQDs@CS composite. Notably, the CQDs@AgNPs@CS nanocomposites also display impressive antioxidant activity, achieving an 80.21 % radical scavenging capacity against DPPH<sup>•</sup>. These findings suggest that CQDs@AgNPs@CS nanocomposites hold great promise for advanced wound care strategies, effectively integrating healing efficacy and infection control into a single formulation.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"311 ","pages":"Article 143621"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced antibacterial and wound healing efficacy of a novel CQDs@AgNPs@CS-based nanocomposites: A multifunctional approach for advanced wound care\",\"authors\":\"Sanae El Ghacham ,&nbsp;Lamia Hejji ,&nbsp;Youssef Aoulad El Hadj Ali ,&nbsp;Anass Wahby ,&nbsp;Lahcen Tamegart ,&nbsp;Luis Pérez-Villarejo ,&nbsp;Zakaria Mennane ,&nbsp;Badredine Souhail ,&nbsp;Abdelmonaim Azzouz\",\"doi\":\"10.1016/j.ijbiomac.2025.143621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wound healing, particularly in the presence of bacterial infections, remains a significant challenge in clinical settings. This study explores the synthesis and characterization of carbon quantum dots (CQDs), silver nanoparticles (AgNPs), and chitosan (CS), designated as CQDs@AgNPs@CS nanocomposites. The primary aim is to evaluate its wound healing efficacy and antibacterial activity. An <em>in vivo</em> incisional wound model in mice is utilized alongside <em>in vitro</em> assessments against clinically relevant Gram-positive (<em>Staphylococcus aureus</em>) and Gram-negative (<em>Escherichia coli</em>, <em>Acinetobacter baumannii</em>, and <em>Klebsiella pneumoniae</em>) bacteria strains. The nanocomposites are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, zeta potential analysis, and Scanning electron microscopy to confirm its structural integrity and functional properties. Preliminary results indicate that the CQDs@AgNPs@CS nanocomposites significantly enhance wound healing and demonstrate potent antibacterial activity, with minimum bactericidal concentrations and minimum inhibitory concentrations ranging from 0.234 to 7.5 mg/mL. Histological analysis indicates that wounds treated with the CQDs@AgNPs@CS nanocomposites exhibit accelerated re-epithelialization, improved wound repair, and a reduced inflammatory response, as evidenced by decreased neutrophil counts in the skin tissue, compared to untreated wounds and those treated with individual components (CQDs, AgNPs, CS) as well as the CQDs@CS composite. Notably, the CQDs@AgNPs@CS nanocomposites also display impressive antioxidant activity, achieving an 80.21 % radical scavenging capacity against DPPH<sup>•</sup>. These findings suggest that CQDs@AgNPs@CS nanocomposites hold great promise for advanced wound care strategies, effectively integrating healing efficacy and infection control into a single formulation.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"311 \",\"pages\":\"Article 143621\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014181302504173X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014181302504173X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

伤口愈合,特别是在存在细菌感染的情况下,仍然是临床环境中的一个重大挑战。本研究探讨了碳量子点(CQDs)、银纳米粒子(AgNPs)和壳聚糖(CS)的合成和表征,并将其命名为CQDs@AgNPs@CS纳米复合材料。主要目的是评价其伤口愈合效果和抗菌活性。小鼠体内切口伤口模型与临床相关的革兰氏阳性(金黄色葡萄球菌)和革兰氏阴性(大肠杆菌、鲍曼不动杆菌和肺炎克雷伯菌)菌株的体外评估一起使用。利用x射线衍射、傅里叶变换红外光谱、zeta电位分析和扫描电镜对纳米复合材料进行了表征,以确定其结构完整性和功能特性。初步结果表明,CQDs@AgNPs@CS纳米复合材料可显著促进伤口愈合,并具有较强的抗菌活性,其最低杀菌浓度和最低抑菌浓度范围为0.234 ~ 7.5 mg/mL。组织学分析表明,与未处理的伤口和使用单个成分(CQDs、AgNPs、CS)以及CQDs@CS复合材料处理的伤口相比,使用CQDs@AgNPs@CS纳米复合材料处理的伤口表现出加速的再上皮化、改善的伤口修复和减少的炎症反应,这一点可以通过皮肤组织中中性粒细胞计数的减少来证明。值得注意的是,CQDs@AgNPs@CS纳米复合材料还显示出令人印象深刻的抗氧化活性,对DPPH•的自由基清除能力达到80.21%。这些发现表明CQDs@AgNPs@CS纳米复合材料在先进的伤口护理策略中具有很大的前景,有效地将愈合功效和感染控制整合到单一配方中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced antibacterial and wound healing efficacy of a novel CQDs@AgNPs@CS-based nanocomposites: A multifunctional approach for advanced wound care

Enhanced antibacterial and wound healing efficacy of a novel CQDs@AgNPs@CS-based nanocomposites: A multifunctional approach for advanced wound care
Wound healing, particularly in the presence of bacterial infections, remains a significant challenge in clinical settings. This study explores the synthesis and characterization of carbon quantum dots (CQDs), silver nanoparticles (AgNPs), and chitosan (CS), designated as CQDs@AgNPs@CS nanocomposites. The primary aim is to evaluate its wound healing efficacy and antibacterial activity. An in vivo incisional wound model in mice is utilized alongside in vitro assessments against clinically relevant Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumoniae) bacteria strains. The nanocomposites are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, zeta potential analysis, and Scanning electron microscopy to confirm its structural integrity and functional properties. Preliminary results indicate that the CQDs@AgNPs@CS nanocomposites significantly enhance wound healing and demonstrate potent antibacterial activity, with minimum bactericidal concentrations and minimum inhibitory concentrations ranging from 0.234 to 7.5 mg/mL. Histological analysis indicates that wounds treated with the CQDs@AgNPs@CS nanocomposites exhibit accelerated re-epithelialization, improved wound repair, and a reduced inflammatory response, as evidenced by decreased neutrophil counts in the skin tissue, compared to untreated wounds and those treated with individual components (CQDs, AgNPs, CS) as well as the CQDs@CS composite. Notably, the CQDs@AgNPs@CS nanocomposites also display impressive antioxidant activity, achieving an 80.21 % radical scavenging capacity against DPPH. These findings suggest that CQDs@AgNPs@CS nanocomposites hold great promise for advanced wound care strategies, effectively integrating healing efficacy and infection control into a single formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信