{"title":"配备电池交换柜的5G基站最优调度策略","authors":"Qi Qi, Deying Zhang, Xiang Hu, Xiao Li, Bing Qi","doi":"10.1016/j.apenergy.2025.125914","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating deployment of 5G base stations (BSs) and self-service battery swapping cabinets (BSCs) in urban distribution networks has raised concerns regarding electricity consumption and power efficiency due to their significant energy demands and large numbers. To address this challenge, leveraging the idle energy resources in 5G BS and BSC for distribution network dispatch can alleviate their impact on peak-valley differentials and optimize their benefits. Moreover, as BSCs are predominantly situated at communication tower sites, they not only enhance the backup power capacity for communication loads but also share the power supply capacity with 5G BSs. Consequently, coordinating the dispatch of both 5G BS and BSC can result in enhanced cumulative benefits. Therefore, this paper proposes an optimal dispatch strategy for 5G BSs equipped with BSCs. Firstly, a joint dispatch framework is established, where the idle capacity of batteries in 5G BS and BSC responds to time-of-use tariff and demand response signals. Then, the individual and joint dispatchable capabilities of 5G BS and BSC are formulated, considering their energy storage configuration, operational characteristics and service quality constraints. Following this, an optimal dispatch model of the joint system is developed to maximize the daily operational profit for 5G BS and BSC. The soft actor-critic algorithm is then employed to efficiently generate charging and discharging strategies for all dispatchable units, ensuring communication service quality and meeting battery swapping demands. The solution algorithm is trained and tested in a Python simulation environment, with results validating the effectiveness and efficiency of the proposed strategy in ensuring the timely dispatch of 5G BS and BSC while maximizing their economic advantages.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"392 ","pages":"Article 125914"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal dispatch strategy for 5G base stations equipped with battery swapping cabinets\",\"authors\":\"Qi Qi, Deying Zhang, Xiang Hu, Xiao Li, Bing Qi\",\"doi\":\"10.1016/j.apenergy.2025.125914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating deployment of 5G base stations (BSs) and self-service battery swapping cabinets (BSCs) in urban distribution networks has raised concerns regarding electricity consumption and power efficiency due to their significant energy demands and large numbers. To address this challenge, leveraging the idle energy resources in 5G BS and BSC for distribution network dispatch can alleviate their impact on peak-valley differentials and optimize their benefits. Moreover, as BSCs are predominantly situated at communication tower sites, they not only enhance the backup power capacity for communication loads but also share the power supply capacity with 5G BSs. Consequently, coordinating the dispatch of both 5G BS and BSC can result in enhanced cumulative benefits. Therefore, this paper proposes an optimal dispatch strategy for 5G BSs equipped with BSCs. Firstly, a joint dispatch framework is established, where the idle capacity of batteries in 5G BS and BSC responds to time-of-use tariff and demand response signals. Then, the individual and joint dispatchable capabilities of 5G BS and BSC are formulated, considering their energy storage configuration, operational characteristics and service quality constraints. Following this, an optimal dispatch model of the joint system is developed to maximize the daily operational profit for 5G BS and BSC. The soft actor-critic algorithm is then employed to efficiently generate charging and discharging strategies for all dispatchable units, ensuring communication service quality and meeting battery swapping demands. The solution algorithm is trained and tested in a Python simulation environment, with results validating the effectiveness and efficiency of the proposed strategy in ensuring the timely dispatch of 5G BS and BSC while maximizing their economic advantages.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"392 \",\"pages\":\"Article 125914\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925006440\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925006440","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An optimal dispatch strategy for 5G base stations equipped with battery swapping cabinets
The escalating deployment of 5G base stations (BSs) and self-service battery swapping cabinets (BSCs) in urban distribution networks has raised concerns regarding electricity consumption and power efficiency due to their significant energy demands and large numbers. To address this challenge, leveraging the idle energy resources in 5G BS and BSC for distribution network dispatch can alleviate their impact on peak-valley differentials and optimize their benefits. Moreover, as BSCs are predominantly situated at communication tower sites, they not only enhance the backup power capacity for communication loads but also share the power supply capacity with 5G BSs. Consequently, coordinating the dispatch of both 5G BS and BSC can result in enhanced cumulative benefits. Therefore, this paper proposes an optimal dispatch strategy for 5G BSs equipped with BSCs. Firstly, a joint dispatch framework is established, where the idle capacity of batteries in 5G BS and BSC responds to time-of-use tariff and demand response signals. Then, the individual and joint dispatchable capabilities of 5G BS and BSC are formulated, considering their energy storage configuration, operational characteristics and service quality constraints. Following this, an optimal dispatch model of the joint system is developed to maximize the daily operational profit for 5G BS and BSC. The soft actor-critic algorithm is then employed to efficiently generate charging and discharging strategies for all dispatchable units, ensuring communication service quality and meeting battery swapping demands. The solution algorithm is trained and tested in a Python simulation environment, with results validating the effectiveness and efficiency of the proposed strategy in ensuring the timely dispatch of 5G BS and BSC while maximizing their economic advantages.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.