Kanhaiya Gupta, Konstantin Poka, Alexander Ulbricht, Anja Waske
{"title":"基于微结构指纹的增材制造部件识别与认证","authors":"Kanhaiya Gupta, Konstantin Poka, Alexander Ulbricht, Anja Waske","doi":"10.1016/j.matdes.2025.113986","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of additive manufacturing, the ability to uniquely identify and authenticate parts is crucial for certification, logistics, and anti-counterfeiting efforts. This study introduces a novel methodology that leverages the intrinsic microstructural features of additively manufactured components for their identification, authentication, and traceability. Unlike traditional tagging methods, such as embedding QR codes on the surface or within the volume of parts, this approach requires no alteration to the printing process, as it utilizes naturally occurring microstructural characteristics.</div><div>The proposed workflow involves the analysis of 3D micro-computed tomography data to identify specific voids that meet predefined identification criteria. This method is demonstrated on a batch of 24 parts manufactured with identical process parameters, proving capable of achieving unambiguous identification and authentication. By establishing a tamper-proof link between the physical part and its digital counterpart, this methodology effectively bridges the physical and digital realms. This not only enhances the traceability of additively manufactured parts but also provides a robust tool for integrating digital materials, parts databases, and product passports with their physical counterparts.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"254 ","pages":"Article 113986"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and authentication of additively manufactured components using their microstructural fingerprint\",\"authors\":\"Kanhaiya Gupta, Konstantin Poka, Alexander Ulbricht, Anja Waske\",\"doi\":\"10.1016/j.matdes.2025.113986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the field of additive manufacturing, the ability to uniquely identify and authenticate parts is crucial for certification, logistics, and anti-counterfeiting efforts. This study introduces a novel methodology that leverages the intrinsic microstructural features of additively manufactured components for their identification, authentication, and traceability. Unlike traditional tagging methods, such as embedding QR codes on the surface or within the volume of parts, this approach requires no alteration to the printing process, as it utilizes naturally occurring microstructural characteristics.</div><div>The proposed workflow involves the analysis of 3D micro-computed tomography data to identify specific voids that meet predefined identification criteria. This method is demonstrated on a batch of 24 parts manufactured with identical process parameters, proving capable of achieving unambiguous identification and authentication. By establishing a tamper-proof link between the physical part and its digital counterpart, this methodology effectively bridges the physical and digital realms. This not only enhances the traceability of additively manufactured parts but also provides a robust tool for integrating digital materials, parts databases, and product passports with their physical counterparts.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"254 \",\"pages\":\"Article 113986\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026412752500406X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026412752500406X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification and authentication of additively manufactured components using their microstructural fingerprint
In the field of additive manufacturing, the ability to uniquely identify and authenticate parts is crucial for certification, logistics, and anti-counterfeiting efforts. This study introduces a novel methodology that leverages the intrinsic microstructural features of additively manufactured components for their identification, authentication, and traceability. Unlike traditional tagging methods, such as embedding QR codes on the surface or within the volume of parts, this approach requires no alteration to the printing process, as it utilizes naturally occurring microstructural characteristics.
The proposed workflow involves the analysis of 3D micro-computed tomography data to identify specific voids that meet predefined identification criteria. This method is demonstrated on a batch of 24 parts manufactured with identical process parameters, proving capable of achieving unambiguous identification and authentication. By establishing a tamper-proof link between the physical part and its digital counterpart, this methodology effectively bridges the physical and digital realms. This not only enhances the traceability of additively manufactured parts but also provides a robust tool for integrating digital materials, parts databases, and product passports with their physical counterparts.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.