基于时空脑功能指标和生物学视角的视觉工作记忆任务个体差异研究

IF 4.7 2区 医学 Q1 NEUROIMAGING
Ronglong Xiong, Qiuzhu Zhang, Junjun Zhang, Zhenlan Jin, Ling Li
{"title":"基于时空脑功能指标和生物学视角的视觉工作记忆任务个体差异研究","authors":"Ronglong Xiong,&nbsp;Qiuzhu Zhang,&nbsp;Junjun Zhang,&nbsp;Zhenlan Jin,&nbsp;Ling Li","doi":"10.1016/j.neuroimage.2025.121220","DOIUrl":null,"url":null,"abstract":"<div><div>Visual working memory (VWM) is a critical area of study in cognitive neuroscience, yet the neural and genetic foundations of individual differences in VWM remain unclear. This study investigates individual differences in VWM performance across four types of visual stimuli (Body, Face, Place, Tool) under 0-back and 2-back conditions by integrating gene expression data and spatiotemporal brain function metrics. First, multiple spatiotemporal brain function metrics were extracted, and Sequential Backward Selection (SBS) and Leave-One-Subject-Out Cross-Validation (LOSO-CV) linear regression were applied to predict behavioral performance under VWM conditions. Model performance was evaluated using RMSE. Next, the Working Memory Individual Differences Map (WMIDM) was constructed based on Pearson correlation coefficients between actual and predicted behavioral performance. Finally, WMIDM was integrated with Allen Human Brain Atlas (AHBA) gene expression data to explore its genetic underpinnings. Notably, the gene analysis is exploratory, providing a preliminary framework for future investigations into the molecular basis of working memory. The results demonstrated that under the 2 vs. 0-back condition, spatiotemporal metrics outperformed static metrics (<span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mtext>spa</mtext></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn><mo>,</mo><mi>q</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>28</mn></mrow></msup><mo>,</mo><mtext>RMSE</mtext><mo>=</mo><mn>0</mn><mo>.</mo><mn>928</mn></mrow></math></span> vs. <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mtext>sta</mtext></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>28</mn><mo>,</mo><mi>q</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>14</mn></mrow></msup><mo>,</mo><mtext>RMSE</mtext><mo>=</mo><mn>0</mn><mo>.</mo><mn>966</mn></mrow></math></span>). Brain regions contributing to the WMIDM were primarily located in the frontal lobe. Furthermore, genes associated with WMIDM were significantly enriched in pathways linked to intellectual disability and mental disorders, as well as related biological processes and cell types. This study highlights the neural and potential genetic foundations of individual differences in working memory through the lens of spatiotemporal multidimensional brain function and gene expression. These findings provide valuable insights for future neuroscience research and pave the way for personalized cognitive interventions.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"313 ","pages":"Article 121220"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on individual differences in visual working memory tasks based on spatiotemporal brain functional metrics and biological perspectives\",\"authors\":\"Ronglong Xiong,&nbsp;Qiuzhu Zhang,&nbsp;Junjun Zhang,&nbsp;Zhenlan Jin,&nbsp;Ling Li\",\"doi\":\"10.1016/j.neuroimage.2025.121220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual working memory (VWM) is a critical area of study in cognitive neuroscience, yet the neural and genetic foundations of individual differences in VWM remain unclear. This study investigates individual differences in VWM performance across four types of visual stimuli (Body, Face, Place, Tool) under 0-back and 2-back conditions by integrating gene expression data and spatiotemporal brain function metrics. First, multiple spatiotemporal brain function metrics were extracted, and Sequential Backward Selection (SBS) and Leave-One-Subject-Out Cross-Validation (LOSO-CV) linear regression were applied to predict behavioral performance under VWM conditions. Model performance was evaluated using RMSE. Next, the Working Memory Individual Differences Map (WMIDM) was constructed based on Pearson correlation coefficients between actual and predicted behavioral performance. Finally, WMIDM was integrated with Allen Human Brain Atlas (AHBA) gene expression data to explore its genetic underpinnings. Notably, the gene analysis is exploratory, providing a preliminary framework for future investigations into the molecular basis of working memory. The results demonstrated that under the 2 vs. 0-back condition, spatiotemporal metrics outperformed static metrics (<span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mtext>spa</mtext></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>40</mn><mo>,</mo><mi>q</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>28</mn></mrow></msup><mo>,</mo><mtext>RMSE</mtext><mo>=</mo><mn>0</mn><mo>.</mo><mn>928</mn></mrow></math></span> vs. <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mtext>sta</mtext></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>28</mn><mo>,</mo><mi>q</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>14</mn></mrow></msup><mo>,</mo><mtext>RMSE</mtext><mo>=</mo><mn>0</mn><mo>.</mo><mn>966</mn></mrow></math></span>). Brain regions contributing to the WMIDM were primarily located in the frontal lobe. Furthermore, genes associated with WMIDM were significantly enriched in pathways linked to intellectual disability and mental disorders, as well as related biological processes and cell types. This study highlights the neural and potential genetic foundations of individual differences in working memory through the lens of spatiotemporal multidimensional brain function and gene expression. These findings provide valuable insights for future neuroscience research and pave the way for personalized cognitive interventions.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"313 \",\"pages\":\"Article 121220\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S105381192500223X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105381192500223X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

视觉工作记忆(VWM)是认知神经科学研究的一个重要领域,但VWM个体差异的神经和遗传基础尚不清楚。本研究通过整合基因表达数据和时空脑功能指标,研究了0-back和2-back条件下4种视觉刺激(身体、面部、地点、工具)下VWM表现的个体差异。首先,提取多个时空脑功能指标,采用序列向后选择(SBS)和留一被试交叉验证(LOSO-CV)线性回归预测VWM条件下的行为表现。采用RMSE对模型性能进行评价。基于实际行为表现与预测行为表现之间的Pearson相关系数,构建工作记忆个体差异图(WMIDM)。最后,将WMIDM与Allen Human Brain Atlas (AHBA)基因表达数据相结合,探索其遗传基础。值得注意的是,基因分析是探索性的,为未来研究工作记忆的分子基础提供了初步框架。结果表明,在2 / 0-back条件下,时空指标优于静态指标(rspa=0.40,q=8.9×10−28,RMSE=0.928 vs. rsta=0.28,q=2.7×10−14,RMSE=0.966)。与WMIDM有关的大脑区域主要位于额叶。此外,与WMIDM相关的基因在与智力残疾和精神障碍相关的途径以及相关的生物学过程和细胞类型中显著富集。本研究通过时空多维脑功能和基因表达的视角,强调了工作记忆个体差异的神经和潜在遗传基础。这些发现为未来的神经科学研究提供了有价值的见解,并为个性化认知干预铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on individual differences in visual working memory tasks based on spatiotemporal brain functional metrics and biological perspectives
Visual working memory (VWM) is a critical area of study in cognitive neuroscience, yet the neural and genetic foundations of individual differences in VWM remain unclear. This study investigates individual differences in VWM performance across four types of visual stimuli (Body, Face, Place, Tool) under 0-back and 2-back conditions by integrating gene expression data and spatiotemporal brain function metrics. First, multiple spatiotemporal brain function metrics were extracted, and Sequential Backward Selection (SBS) and Leave-One-Subject-Out Cross-Validation (LOSO-CV) linear regression were applied to predict behavioral performance under VWM conditions. Model performance was evaluated using RMSE. Next, the Working Memory Individual Differences Map (WMIDM) was constructed based on Pearson correlation coefficients between actual and predicted behavioral performance. Finally, WMIDM was integrated with Allen Human Brain Atlas (AHBA) gene expression data to explore its genetic underpinnings. Notably, the gene analysis is exploratory, providing a preliminary framework for future investigations into the molecular basis of working memory. The results demonstrated that under the 2 vs. 0-back condition, spatiotemporal metrics outperformed static metrics (rspa=0.40,q=8.9×1028,RMSE=0.928 vs. rsta=0.28,q=2.7×1014,RMSE=0.966). Brain regions contributing to the WMIDM were primarily located in the frontal lobe. Furthermore, genes associated with WMIDM were significantly enriched in pathways linked to intellectual disability and mental disorders, as well as related biological processes and cell types. This study highlights the neural and potential genetic foundations of individual differences in working memory through the lens of spatiotemporal multidimensional brain function and gene expression. These findings provide valuable insights for future neuroscience research and pave the way for personalized cognitive interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信