规定S2上具有圆锥奇点的正曲率

IF 1.7 2区 数学 Q1 MATHEMATICS
Jingyi Chen , Yuxiang Li , Yunqing Wu
{"title":"规定S2上具有圆锥奇点的正曲率","authors":"Jingyi Chen ,&nbsp;Yuxiang Li ,&nbsp;Yunqing Wu","doi":"10.1016/j.jfa.2025.111031","DOIUrl":null,"url":null,"abstract":"<div><div>For conformal metrics with conical singularities and positive curvature on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, we prove a convergence theorem and apply it to obtain a criterion for nonexistence in an open region of the prescribing data. The core of our study is a fine analysis of the bubble trees and an area identity in the convergence process.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111031"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribing positive curvature with conical singularities on S2\",\"authors\":\"Jingyi Chen ,&nbsp;Yuxiang Li ,&nbsp;Yunqing Wu\",\"doi\":\"10.1016/j.jfa.2025.111031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For conformal metrics with conical singularities and positive curvature on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, we prove a convergence theorem and apply it to obtain a criterion for nonexistence in an open region of the prescribing data. The core of our study is a fine analysis of the bubble trees and an area identity in the convergence process.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 111031\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002137\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002137","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于S2上具有圆锥奇点和正曲率的共形度量,我们证明了一个收敛定理,并应用它得到了在规定数据的开区域内不存在的判据。我们研究的核心是对气泡树的精细分析和收敛过程中的区域恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribing positive curvature with conical singularities on S2
For conformal metrics with conical singularities and positive curvature on S2, we prove a convergence theorem and apply it to obtain a criterion for nonexistence in an open region of the prescribing data. The core of our study is a fine analysis of the bubble trees and an area identity in the convergence process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信