{"title":"用散弹枪宏基因组学检测食物和水基质中的寄生虫:叙述综述","authors":"Paolo Vatta, Simone M. Cacciò","doi":"10.1016/j.fawpar.2025.e00265","DOIUrl":null,"url":null,"abstract":"<div><div>Many helminths and protozoa are transmitted to humans through the consumption of contaminated food or water, and this underlines the importance of methods for their detection in these matrices. Due to the difficulties in isolating parasites prior to their identification, indirect detection methods are used, mostly relying upon targeted amplification of nucleic acids via PCR and/or qPCR. With the development of high throughput sequencing technologies, an untargeted detection method, shotgun metagenomics, became available. By sequencing the total DNA extracted from a given source, and through bioinformatics analyses of the sequencing reads, shotgun metagenomics allows profiling the entire microbial community therein present, including eukaryotes and, therefore, parasites. In this article, we reviewed the studies that specifically addressed the detection of parasites in food (<em>n</em> = 2) and water matrices (<em>n</em> = 10) by shotgun metagenomics. Most studies focused on wastewater samples and reported the detection of many parasites of human and veterinary importance from various areas of the world, highlighting the potential of shotgun metagenomics to provide important data for parasitic pathogens surveillance. After examining the different analytical workflows employed in these studies, which were not developed for detection of eukaryotes (or parasites), we identified two aspects deserving attention. First, that assignment based on short reads matching ribosomal sequences may generate false positives due to high sequence conservation among eukaryotic organisms. Second, that reassessing the relatively small number of reads of eukaryotic origin by a BLAST search can confirm, or deny, identification of parasitic pathogens.</div></div>","PeriodicalId":37941,"journal":{"name":"Food and Waterborne Parasitology","volume":"39 ","pages":"Article e00265"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of parasites in food and water matrices by shotgun metagenomics: A narrative review\",\"authors\":\"Paolo Vatta, Simone M. Cacciò\",\"doi\":\"10.1016/j.fawpar.2025.e00265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many helminths and protozoa are transmitted to humans through the consumption of contaminated food or water, and this underlines the importance of methods for their detection in these matrices. Due to the difficulties in isolating parasites prior to their identification, indirect detection methods are used, mostly relying upon targeted amplification of nucleic acids via PCR and/or qPCR. With the development of high throughput sequencing technologies, an untargeted detection method, shotgun metagenomics, became available. By sequencing the total DNA extracted from a given source, and through bioinformatics analyses of the sequencing reads, shotgun metagenomics allows profiling the entire microbial community therein present, including eukaryotes and, therefore, parasites. In this article, we reviewed the studies that specifically addressed the detection of parasites in food (<em>n</em> = 2) and water matrices (<em>n</em> = 10) by shotgun metagenomics. Most studies focused on wastewater samples and reported the detection of many parasites of human and veterinary importance from various areas of the world, highlighting the potential of shotgun metagenomics to provide important data for parasitic pathogens surveillance. After examining the different analytical workflows employed in these studies, which were not developed for detection of eukaryotes (or parasites), we identified two aspects deserving attention. First, that assignment based on short reads matching ribosomal sequences may generate false positives due to high sequence conservation among eukaryotic organisms. Second, that reassessing the relatively small number of reads of eukaryotic origin by a BLAST search can confirm, or deny, identification of parasitic pathogens.</div></div>\",\"PeriodicalId\":37941,\"journal\":{\"name\":\"Food and Waterborne Parasitology\",\"volume\":\"39 \",\"pages\":\"Article e00265\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Waterborne Parasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405676625000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Waterborne Parasitology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405676625000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Detection of parasites in food and water matrices by shotgun metagenomics: A narrative review
Many helminths and protozoa are transmitted to humans through the consumption of contaminated food or water, and this underlines the importance of methods for their detection in these matrices. Due to the difficulties in isolating parasites prior to their identification, indirect detection methods are used, mostly relying upon targeted amplification of nucleic acids via PCR and/or qPCR. With the development of high throughput sequencing technologies, an untargeted detection method, shotgun metagenomics, became available. By sequencing the total DNA extracted from a given source, and through bioinformatics analyses of the sequencing reads, shotgun metagenomics allows profiling the entire microbial community therein present, including eukaryotes and, therefore, parasites. In this article, we reviewed the studies that specifically addressed the detection of parasites in food (n = 2) and water matrices (n = 10) by shotgun metagenomics. Most studies focused on wastewater samples and reported the detection of many parasites of human and veterinary importance from various areas of the world, highlighting the potential of shotgun metagenomics to provide important data for parasitic pathogens surveillance. After examining the different analytical workflows employed in these studies, which were not developed for detection of eukaryotes (or parasites), we identified two aspects deserving attention. First, that assignment based on short reads matching ribosomal sequences may generate false positives due to high sequence conservation among eukaryotic organisms. Second, that reassessing the relatively small number of reads of eukaryotic origin by a BLAST search can confirm, or deny, identification of parasitic pathogens.
期刊介绍:
Food and Waterborne Parasitology publishes high quality papers containing original research findings, investigative reports, and scientific proceedings on parasites which are transmitted to humans via the consumption of food or water. The relevant parasites include protozoa, nematodes, cestodes and trematodes which are transmitted by food or water and capable of infecting humans. Pertinent food includes products of animal or plant origin which are domestic or wild, and consumed by humans. Animals and plants from both terrestrial and aquatic sources are included, as well as studies related to potable and other types of water which serve to harbor, perpetuate or disseminate food and waterborne parasites. Studies dealing with prevalence, transmission, epidemiology, risk assessment and mitigation, including control measures and test methodologies for parasites in food and water are of particular interest. Evidence of the emergence of such parasites and interactions among domestic animals, wildlife and humans are of interest. The impact of parasites on the health and welfare of humans is viewed as very important and within scope of the journal. Manuscripts with scientifically generated information on associations between food and waterborne parasitic diseases and lifestyle, culture and economies are also welcome. Studies involving animal experiments must meet the International Guiding Principles for Biomedical Research Involving Animals as issued by the Council for International Organizations of Medical Sciences.