基于混合琴鸟-模式搜索优化PI-(1+DD)控制器的虚拟阻尼和储能惯性技术增强多区域微电网稳定性

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Amit Sharma , Navdeep Singh
{"title":"基于混合琴鸟-模式搜索优化PI-(1+DD)控制器的虚拟阻尼和储能惯性技术增强多区域微电网稳定性","authors":"Amit Sharma ,&nbsp;Navdeep Singh","doi":"10.1016/j.est.2025.116830","DOIUrl":null,"url":null,"abstract":"<div><div>Renewable Energy Sources (RES) are crucial for modern power systems, providing clean, cost-effective electricity, but these systems lack inertia, which can negatively impact microgrid stability and synchronization. This paper proposes a photovoltaic-based virtual inertia virtual damping system combined with an energy storage system (ESS) to enhance the dynamic performance of multi-area microgrids. The Hybrid Lyrebird-Pattern Search (hLOA-PS) optimization technique is utilized to tune the PI-(1 + DD) controller parameters, with other algorithms like Grey Wolf Optimization (hGWO-PS), Artificial Bee Colony (hABC-PS), and Osprey pattern search optimization (hOOA-PS). Convergence tests and Wilcoxon's rank-signed non-parametric statistical test indicate that hLOA-PS outperforms the other algorithms. The proposed photovoltaic virtual inertia virtual damping energy storage virtual inertia model demonstrates superior dynamic performance in terms of rise time, settling time, overshoot, and undershoot compared to conventional, energy storage virtual inertia and photovoltaic virtual inertia energy storage virtual inertia system. Specifically, the photovoltaic virtual inertia virtual damping energy storage virtual inertia model achieved reductions in rise time by 18 %, 5 %, 4 %, and 7 %, 10 % for ΔF<sub>1</sub> and ΔF<sub>2</sub> compared to conventional, energy storage virtual inertia, and photovoltaic virtual inertia energy storage virtual inertia system. The high penetration rate of RES, which reduces system inertia, is also compensated by the proposed model, achieving reductions of 75 %, 55 % for ∆F<sub>1</sub>, 74 %, 55 % for ∆F<sub>2</sub>, and 92 %, 66 % for ∆P<sub>12</sub> in maximum frequency drop &amp; reductions of 84 %, 30 % for ∆F<sub>1</sub>, 76 %, 46 % for ∆F<sub>2</sub>, and 92 %, 66 % for ∆P<sub>12</sub> in maximum frequency overshoot.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"124 ","pages":"Article 116830"},"PeriodicalIF":8.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing multi-area microgrid stability with virtual damping and energy storage inertia techniques using hybrid lyrebird - Pattern search optimized PI-(1+DD) controller\",\"authors\":\"Amit Sharma ,&nbsp;Navdeep Singh\",\"doi\":\"10.1016/j.est.2025.116830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Renewable Energy Sources (RES) are crucial for modern power systems, providing clean, cost-effective electricity, but these systems lack inertia, which can negatively impact microgrid stability and synchronization. This paper proposes a photovoltaic-based virtual inertia virtual damping system combined with an energy storage system (ESS) to enhance the dynamic performance of multi-area microgrids. The Hybrid Lyrebird-Pattern Search (hLOA-PS) optimization technique is utilized to tune the PI-(1 + DD) controller parameters, with other algorithms like Grey Wolf Optimization (hGWO-PS), Artificial Bee Colony (hABC-PS), and Osprey pattern search optimization (hOOA-PS). Convergence tests and Wilcoxon's rank-signed non-parametric statistical test indicate that hLOA-PS outperforms the other algorithms. The proposed photovoltaic virtual inertia virtual damping energy storage virtual inertia model demonstrates superior dynamic performance in terms of rise time, settling time, overshoot, and undershoot compared to conventional, energy storage virtual inertia and photovoltaic virtual inertia energy storage virtual inertia system. Specifically, the photovoltaic virtual inertia virtual damping energy storage virtual inertia model achieved reductions in rise time by 18 %, 5 %, 4 %, and 7 %, 10 % for ΔF<sub>1</sub> and ΔF<sub>2</sub> compared to conventional, energy storage virtual inertia, and photovoltaic virtual inertia energy storage virtual inertia system. The high penetration rate of RES, which reduces system inertia, is also compensated by the proposed model, achieving reductions of 75 %, 55 % for ∆F<sub>1</sub>, 74 %, 55 % for ∆F<sub>2</sub>, and 92 %, 66 % for ∆P<sub>12</sub> in maximum frequency drop &amp; reductions of 84 %, 30 % for ∆F<sub>1</sub>, 76 %, 46 % for ∆F<sub>2</sub>, and 92 %, 66 % for ∆P<sub>12</sub> in maximum frequency overshoot.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"124 \",\"pages\":\"Article 116830\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X25015439\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25015439","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源(RES)对现代电力系统至关重要,它提供清洁、具有成本效益的电力,但这些系统缺乏惯性,这可能会对微电网的稳定性和同步产生负面影响。为了提高多区域微电网的动态性能,提出了一种基于光伏的虚拟惯性虚拟阻尼系统与储能系统相结合。利用混合lyrebird模式搜索(hLOA-PS)优化技术,与灰狼优化(hGWO-PS)、人工蜂群优化(hABC-PS)和鱼鹰模式搜索优化(hOOA-PS)等算法一起对PI-(1 + DD)控制器参数进行优化。收敛性检验和Wilcoxon秩符号非参数统计检验表明,hLOA-PS算法优于其他算法。所提出的光伏虚拟惯性虚拟阻尼储能虚拟惯性模型在上升时间、沉降时间、超调量、欠调量等方面均优于常规储能虚拟惯性和光伏虚拟惯性储能虚拟惯性系统。具体而言,光伏虚拟惯性虚拟阻尼储能虚拟惯性模型与传统储能虚拟惯性和光伏虚拟惯性储能虚拟惯性系统相比,ΔF1和ΔF2的上升时间分别减少了18%、5%、4%和7%、10%。RES的高穿透率降低了系统惯性,也通过所提出的模型得到补偿,在最大频率下降&方面,∆F1降低了75%,55%,∆F2降低了74%,55%,∆P12降低了92%,66%;在最大频率超调中,∆F1减少84%,30%,∆F2减少76%,46%,∆P12减少92%,66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing multi-area microgrid stability with virtual damping and energy storage inertia techniques using hybrid lyrebird - Pattern search optimized PI-(1+DD) controller
Renewable Energy Sources (RES) are crucial for modern power systems, providing clean, cost-effective electricity, but these systems lack inertia, which can negatively impact microgrid stability and synchronization. This paper proposes a photovoltaic-based virtual inertia virtual damping system combined with an energy storage system (ESS) to enhance the dynamic performance of multi-area microgrids. The Hybrid Lyrebird-Pattern Search (hLOA-PS) optimization technique is utilized to tune the PI-(1 + DD) controller parameters, with other algorithms like Grey Wolf Optimization (hGWO-PS), Artificial Bee Colony (hABC-PS), and Osprey pattern search optimization (hOOA-PS). Convergence tests and Wilcoxon's rank-signed non-parametric statistical test indicate that hLOA-PS outperforms the other algorithms. The proposed photovoltaic virtual inertia virtual damping energy storage virtual inertia model demonstrates superior dynamic performance in terms of rise time, settling time, overshoot, and undershoot compared to conventional, energy storage virtual inertia and photovoltaic virtual inertia energy storage virtual inertia system. Specifically, the photovoltaic virtual inertia virtual damping energy storage virtual inertia model achieved reductions in rise time by 18 %, 5 %, 4 %, and 7 %, 10 % for ΔF1 and ΔF2 compared to conventional, energy storage virtual inertia, and photovoltaic virtual inertia energy storage virtual inertia system. The high penetration rate of RES, which reduces system inertia, is also compensated by the proposed model, achieving reductions of 75 %, 55 % for ∆F1, 74 %, 55 % for ∆F2, and 92 %, 66 % for ∆P12 in maximum frequency drop & reductions of 84 %, 30 % for ∆F1, 76 %, 46 % for ∆F2, and 92 %, 66 % for ∆P12 in maximum frequency overshoot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信