近似贝塞尔分数阶导数的一种有效的运算搭配方法

Q1 Mathematics
Hadiseh Jafari Arimi, Mostafa Eslami
{"title":"近似贝塞尔分数阶导数的一种有效的运算搭配方法","authors":"Hadiseh Jafari Arimi,&nbsp;Mostafa Eslami","doi":"10.1016/j.padiff.2025.101180","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we establish the operational matrices for the Bessel fractional derivative (FDe) and the Riesz FDe applying the shifted Legendre polynomials. This technique is applied for the numerical study Euler–Poisson–Darboux equation involving distributed-order Bessel FDe and the spatial Riesz FDe. Additionally, three numerical illustrations are conducted to demonstrate the effectiveness and trustworthiness of the proposed techniques.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101180"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective operational-collocation method for approximating Bessel fractional derivative\",\"authors\":\"Hadiseh Jafari Arimi,&nbsp;Mostafa Eslami\",\"doi\":\"10.1016/j.padiff.2025.101180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we establish the operational matrices for the Bessel fractional derivative (FDe) and the Riesz FDe applying the shifted Legendre polynomials. This technique is applied for the numerical study Euler–Poisson–Darboux equation involving distributed-order Bessel FDe and the spatial Riesz FDe. Additionally, three numerical illustrations are conducted to demonstrate the effectiveness and trustworthiness of the proposed techniques.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266681812500107X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266681812500107X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文利用移位的勒让德多项式建立了贝塞尔分数阶导数(FDe)和Riesz分数阶导数(FDe)的运算矩阵。将该方法应用于涉及分布阶贝塞尔FDe和空间Riesz FDe的欧拉-泊松-达布方程的数值研究。此外,通过三个数值实例证明了所提出技术的有效性和可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective operational-collocation method for approximating Bessel fractional derivative
In this work, we establish the operational matrices for the Bessel fractional derivative (FDe) and the Riesz FDe applying the shifted Legendre polynomials. This technique is applied for the numerical study Euler–Poisson–Darboux equation involving distributed-order Bessel FDe and the spatial Riesz FDe. Additionally, three numerical illustrations are conducted to demonstrate the effectiveness and trustworthiness of the proposed techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信