{"title":"一类具有临界Hardy-Sobolev指数的发散型椭圆方程的无穷多解","authors":"Khalid Benlhachmi, Khalid Bouabid, Rachid Echarghaoui, Hicham Hadad","doi":"10.1016/j.padiff.2025.101179","DOIUrl":null,"url":null,"abstract":"<div><div>By using concentration estimates, Fountain Theorem and its Dual form we prove the existence of two disjoint and infinite sets of solutions for the following elliptic equation in divergent form with critical Hardy–Sobolev exponent and concave–convex nonlinearity <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mo>div</mo><mrow><mo>(</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>λ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>The problem is considered in an open bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> under certain assumptions on <span><math><mi>a</mi></math></span> and <span><math><mi>Q</mi></math></span>.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101179"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many solutions for an elliptic equation in divergent form with critical Hardy–Sobolev exponent\",\"authors\":\"Khalid Benlhachmi, Khalid Bouabid, Rachid Echarghaoui, Hicham Hadad\",\"doi\":\"10.1016/j.padiff.2025.101179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By using concentration estimates, Fountain Theorem and its Dual form we prove the existence of two disjoint and infinite sets of solutions for the following elliptic equation in divergent form with critical Hardy–Sobolev exponent and concave–convex nonlinearity <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mo>div</mo><mrow><mo>(</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfrac><mrow><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>λ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>The problem is considered in an open bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> under certain assumptions on <span><math><mi>a</mi></math></span> and <span><math><mi>Q</mi></math></span>.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Infinitely many solutions for an elliptic equation in divergent form with critical Hardy–Sobolev exponent
By using concentration estimates, Fountain Theorem and its Dual form we prove the existence of two disjoint and infinite sets of solutions for the following elliptic equation in divergent form with critical Hardy–Sobolev exponent and concave–convex nonlinearity The problem is considered in an open bounded domain under certain assumptions on and .