Micha Christoph, Charlotte Knierim, Anders Martinsson, Raphael Steiner
{"title":"改进了Zpd中零和循环的边界","authors":"Micha Christoph, Charlotte Knierim, Anders Martinsson, Raphael Steiner","doi":"10.1016/j.jctb.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>For a finite abelian group <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mo>+</mo><mo>)</mo></math></span>, let <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> denote the smallest positive integer <em>n</em> such that for each labeling of the arcs of the complete digraph of order <em>n</em> using elements from Γ, there exists a directed cycle such that the total sum of the arc-labels along the cycle equals 0. Alon and Krivelevich initiated the study of the parameter <span><math><mi>n</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> on cyclic groups and proved that <span><math><mi>n</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>q</mi><mi>log</mi><mo></mo><mi>q</mi><mo>)</mo></math></span>. Several improvements and generalizations of this bound have since been obtained, and an optimal bound in terms of the group order of the form <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>≤</mo><mo>|</mo><mi>Γ</mi><mo>|</mo><mo>+</mo><mn>1</mn></math></span> was recently announced by Campbell, Gollin, Hendrey and the last author. While this bound is tight when the group Γ is cyclic, in cases when Γ is far from being cyclic, significant improvements on the bound can be made. In this direction, studying the prototypical case when <span><math><mi>Γ</mi><mo>=</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is a power of a cyclic group of prime order, Letzter and Morrison [<em>Journal of Combinatorial Theory Series B, 2024</em>] showed that <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>p</mi><mi>d</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>d</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> and that <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>d</mi><mo>)</mo></math></span>. They then posed the problem of proving an (asymptotically optimal) upper bound of <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>p</mi><mi>d</mi><mo>)</mo></math></span> for all primes <em>p</em> and <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>. In this paper, we solve this problem for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and improve their bound for all primes <span><math><mi>p</mi><mo>≥</mo><mn>3</mn></math></span> by proving <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mn>5</mn><mi>d</mi></math></span> and <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>p</mi><mi>d</mi><mi>log</mi><mo></mo><mi>d</mi><mo>)</mo></math></span>. While the first bound determines <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></math></span> up to a multiplicative error of 5, the second bound is tight up to a <span><math><mi>log</mi><mo></mo><mi>d</mi></math></span> factor. Moreover, our result shows that a tight bound of <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>p</mi><mi>d</mi><mo>)</mo></math></span> for arbitrary <em>p</em> and <em>d</em> would follow from a (strong form) of the well-known conjecture of Jaeger, Linial, Payan and Tarsi on additive bases in <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>.</div><div>Along the way to proving these results, we establish a generalization of a hypergraph matching result by Haxell in a matroidal setting. Concretely, we obtain sufficient conditions for the existence of matchings in a hypergraph whose hyperedges are labeled by the elements of a matroid, with the property that the edges in the matching induce a basis of the matroid. We believe that these statements are of independent interest.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 365-373"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved bounds for zero-sum cycles in Zpd\",\"authors\":\"Micha Christoph, Charlotte Knierim, Anders Martinsson, Raphael Steiner\",\"doi\":\"10.1016/j.jctb.2025.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a finite abelian group <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mo>+</mo><mo>)</mo></math></span>, let <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> denote the smallest positive integer <em>n</em> such that for each labeling of the arcs of the complete digraph of order <em>n</em> using elements from Γ, there exists a directed cycle such that the total sum of the arc-labels along the cycle equals 0. Alon and Krivelevich initiated the study of the parameter <span><math><mi>n</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> on cyclic groups and proved that <span><math><mi>n</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>q</mi><mi>log</mi><mo></mo><mi>q</mi><mo>)</mo></math></span>. Several improvements and generalizations of this bound have since been obtained, and an optimal bound in terms of the group order of the form <span><math><mi>n</mi><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>≤</mo><mo>|</mo><mi>Γ</mi><mo>|</mo><mo>+</mo><mn>1</mn></math></span> was recently announced by Campbell, Gollin, Hendrey and the last author. While this bound is tight when the group Γ is cyclic, in cases when Γ is far from being cyclic, significant improvements on the bound can be made. In this direction, studying the prototypical case when <span><math><mi>Γ</mi><mo>=</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is a power of a cyclic group of prime order, Letzter and Morrison [<em>Journal of Combinatorial Theory Series B, 2024</em>] showed that <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>p</mi><mi>d</mi><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>d</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> and that <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo></mo><mi>d</mi><mo>)</mo></math></span>. They then posed the problem of proving an (asymptotically optimal) upper bound of <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>p</mi><mi>d</mi><mo>)</mo></math></span> for all primes <em>p</em> and <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span>. In this paper, we solve this problem for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> and improve their bound for all primes <span><math><mi>p</mi><mo>≥</mo><mn>3</mn></math></span> by proving <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mn>5</mn><mi>d</mi></math></span> and <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mi>O</mi><mo>(</mo><mi>p</mi><mi>d</mi><mi>log</mi><mo></mo><mi>d</mi><mo>)</mo></math></span>. While the first bound determines <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></math></span> up to a multiplicative error of 5, the second bound is tight up to a <span><math><mi>log</mi><mo></mo><mi>d</mi></math></span> factor. Moreover, our result shows that a tight bound of <span><math><mi>n</mi><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>p</mi><mi>d</mi><mo>)</mo></math></span> for arbitrary <em>p</em> and <em>d</em> would follow from a (strong form) of the well-known conjecture of Jaeger, Linial, Payan and Tarsi on additive bases in <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>.</div><div>Along the way to proving these results, we establish a generalization of a hypergraph matching result by Haxell in a matroidal setting. Concretely, we obtain sufficient conditions for the existence of matchings in a hypergraph whose hyperedges are labeled by the elements of a matroid, with the property that the edges in the matching induce a basis of the matroid. We believe that these statements are of independent interest.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"173 \",\"pages\":\"Pages 365-373\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000188\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000188","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于有限阿贝尔群(Γ,+),设n(Γ)表示最小的正整数n,使得对于使用Γ中的元素标记n阶的完全有向图的每个弧,存在一个有向循环,使得沿循环的弧标记的总和等于0。Alon和Krivelevich开创了循环群上n(⋅)参数的研究,证明了n(Zq)=O(qlog)。此后,对这一界进行了若干改进和推广,最近由Campbell, Gollin, hendry和最后一位作者提出了n(Γ)≤|Γ|+1的群阶最优界。当组Γ是循环的时候,这个边界是紧的,而当Γ远不是循环的时候,可以对边界进行重大改进。在这个方向上,Letzter和Morrison [Journal of Combinatorial Theory Series B, 2024]研究了Γ=Zpd是一个素阶循环群幂的典型情况,证明了n(Zpd)≤O(pd(log d)2), n(Z2d)≤O(log d)。然后,他们提出了证明对于所有素数p和d∈n, n(Zpd)≤O(pd)的(渐近最优)上界的问题。本文通过证明n(Z2d)≤5d和n(Zpd)≤O(pdlog (d)),解决了p=2时的这一问题,并改进了p≥3时所有素数的界。当第一个边界决定n(Z2d)到5的乘法误差时,第二个边界紧到一个log (d)因子。此外,我们的结果表明,对于任意p和d, n(Zpd)=Θ(pd)的紧界是由著名的Jaeger, Linial, Payan和Tarsi在Zpd上的加性基猜想的一个(强形式)推导出来的。在证明这些结果的过程中,我们建立了Haxell在矩阵环境下的超图匹配结果的推广。具体地说,我们得到了超图中超边由一个拟阵的元素标记的匹配存在的充分条件,并得到了该超图中匹配中的边可以引出该拟阵的一组基。我们认为,这些声明具有独立的利益。
For a finite abelian group , let denote the smallest positive integer n such that for each labeling of the arcs of the complete digraph of order n using elements from Γ, there exists a directed cycle such that the total sum of the arc-labels along the cycle equals 0. Alon and Krivelevich initiated the study of the parameter on cyclic groups and proved that . Several improvements and generalizations of this bound have since been obtained, and an optimal bound in terms of the group order of the form was recently announced by Campbell, Gollin, Hendrey and the last author. While this bound is tight when the group Γ is cyclic, in cases when Γ is far from being cyclic, significant improvements on the bound can be made. In this direction, studying the prototypical case when is a power of a cyclic group of prime order, Letzter and Morrison [Journal of Combinatorial Theory Series B, 2024] showed that and that . They then posed the problem of proving an (asymptotically optimal) upper bound of for all primes p and . In this paper, we solve this problem for and improve their bound for all primes by proving and . While the first bound determines up to a multiplicative error of 5, the second bound is tight up to a factor. Moreover, our result shows that a tight bound of for arbitrary p and d would follow from a (strong form) of the well-known conjecture of Jaeger, Linial, Payan and Tarsi on additive bases in .
Along the way to proving these results, we establish a generalization of a hypergraph matching result by Haxell in a matroidal setting. Concretely, we obtain sufficient conditions for the existence of matchings in a hypergraph whose hyperedges are labeled by the elements of a matroid, with the property that the edges in the matching induce a basis of the matroid. We believe that these statements are of independent interest.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.