Ruyi Zhang , Hangdi Chen , Kai Guo , Zhihao Bai , Jie Huang , Xiong Zhang , Yuemin Ding
{"title":"Nischarin在发育大鼠脑中的时空表达通过PAK1/LIMK1/cofilin通路介导神经元迁移","authors":"Ruyi Zhang , Hangdi Chen , Kai Guo , Zhihao Bai , Jie Huang , Xiong Zhang , Yuemin Ding","doi":"10.1016/j.neulet.2025.138251","DOIUrl":null,"url":null,"abstract":"<div><div>Nischarin, a cytoplasmic scaffold protein, plays a crucial role in modulating cell morphology and function. Our prior investigations revealed its high expression in certain areas of the adult rat brain. Yet, the intricate spatiotemporal dynamics of Nischarin expression across various stages of rat development, as well as its influence on the nervous system’s functionality, remain unexplored. In this study, we meticulously examined the expression patterns of Nischarin and the phosphorylation profiles of the PAK1/LIMK1/cofilin signaling cascade within the cerebral cortex and hippocampus, spanning from embryonic development through postnatal maturation. Furthermore, we delved into how Nischarin affects the neuronal migration and the underlying mechanisms. Our findings indicated that from postnatal day 1 to 28, there was a consistent increasing trend in both the protein and mRNA levels of Nischarin in the cerebral cortex and hippocampus. Interestingly, the phosphorylation levels of PAK1 and LIMK1 increased briefly at postnatal day 1, and then gradually decreased from postnatal day 21 to 28. Immunocoprecipitation revealed the interaction between endogenous Nischarin and PAK1/LIMK1 in the cerebral cortex. Notably, suppressing Nischarin expression markedly bolstered the migration ability of Neuro-2a cells and concurrently elevated the phosphorylation levels of the PAK1/LIMK1/cofilin signaling pathway. This elevation was effectively counteracted by the PAK1 inhibitor IPA3. Our research suggests that the progressive increase in Nischarin protein expression during development is likely integral to the normal developmental trajectory of the rat brain. This involvement appears to be mediated by Nischarin’s regulation of neuronal migration through modulating the activity of the PAK1/LIMK1/cofilin signaling pathway.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"856 ","pages":"Article 138251"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal expression of Nischarin in developing rat brain mediates neuronal migration via the PAK1/LIMK1/cofilin pathway\",\"authors\":\"Ruyi Zhang , Hangdi Chen , Kai Guo , Zhihao Bai , Jie Huang , Xiong Zhang , Yuemin Ding\",\"doi\":\"10.1016/j.neulet.2025.138251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nischarin, a cytoplasmic scaffold protein, plays a crucial role in modulating cell morphology and function. Our prior investigations revealed its high expression in certain areas of the adult rat brain. Yet, the intricate spatiotemporal dynamics of Nischarin expression across various stages of rat development, as well as its influence on the nervous system’s functionality, remain unexplored. In this study, we meticulously examined the expression patterns of Nischarin and the phosphorylation profiles of the PAK1/LIMK1/cofilin signaling cascade within the cerebral cortex and hippocampus, spanning from embryonic development through postnatal maturation. Furthermore, we delved into how Nischarin affects the neuronal migration and the underlying mechanisms. Our findings indicated that from postnatal day 1 to 28, there was a consistent increasing trend in both the protein and mRNA levels of Nischarin in the cerebral cortex and hippocampus. Interestingly, the phosphorylation levels of PAK1 and LIMK1 increased briefly at postnatal day 1, and then gradually decreased from postnatal day 21 to 28. Immunocoprecipitation revealed the interaction between endogenous Nischarin and PAK1/LIMK1 in the cerebral cortex. Notably, suppressing Nischarin expression markedly bolstered the migration ability of Neuro-2a cells and concurrently elevated the phosphorylation levels of the PAK1/LIMK1/cofilin signaling pathway. This elevation was effectively counteracted by the PAK1 inhibitor IPA3. Our research suggests that the progressive increase in Nischarin protein expression during development is likely integral to the normal developmental trajectory of the rat brain. This involvement appears to be mediated by Nischarin’s regulation of neuronal migration through modulating the activity of the PAK1/LIMK1/cofilin signaling pathway.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"856 \",\"pages\":\"Article 138251\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394025001399\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025001399","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Spatiotemporal expression of Nischarin in developing rat brain mediates neuronal migration via the PAK1/LIMK1/cofilin pathway
Nischarin, a cytoplasmic scaffold protein, plays a crucial role in modulating cell morphology and function. Our prior investigations revealed its high expression in certain areas of the adult rat brain. Yet, the intricate spatiotemporal dynamics of Nischarin expression across various stages of rat development, as well as its influence on the nervous system’s functionality, remain unexplored. In this study, we meticulously examined the expression patterns of Nischarin and the phosphorylation profiles of the PAK1/LIMK1/cofilin signaling cascade within the cerebral cortex and hippocampus, spanning from embryonic development through postnatal maturation. Furthermore, we delved into how Nischarin affects the neuronal migration and the underlying mechanisms. Our findings indicated that from postnatal day 1 to 28, there was a consistent increasing trend in both the protein and mRNA levels of Nischarin in the cerebral cortex and hippocampus. Interestingly, the phosphorylation levels of PAK1 and LIMK1 increased briefly at postnatal day 1, and then gradually decreased from postnatal day 21 to 28. Immunocoprecipitation revealed the interaction between endogenous Nischarin and PAK1/LIMK1 in the cerebral cortex. Notably, suppressing Nischarin expression markedly bolstered the migration ability of Neuro-2a cells and concurrently elevated the phosphorylation levels of the PAK1/LIMK1/cofilin signaling pathway. This elevation was effectively counteracted by the PAK1 inhibitor IPA3. Our research suggests that the progressive increase in Nischarin protein expression during development is likely integral to the normal developmental trajectory of the rat brain. This involvement appears to be mediated by Nischarin’s regulation of neuronal migration through modulating the activity of the PAK1/LIMK1/cofilin signaling pathway.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.