压电致动器蠕变非线性的分数阶框架

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhongxiang Yuan , Xiaoqing Li , Ziyu Xiao , Zhengguang Zhang , Shuliu Zhou , Cailin Hong , Xuedong Chen , Lizhan Zeng , Yunlong Wang , Jiulin Wu
{"title":"压电致动器蠕变非线性的分数阶框架","authors":"Zhongxiang Yuan ,&nbsp;Xiaoqing Li ,&nbsp;Ziyu Xiao ,&nbsp;Zhengguang Zhang ,&nbsp;Shuliu Zhou ,&nbsp;Cailin Hong ,&nbsp;Xuedong Chen ,&nbsp;Lizhan Zeng ,&nbsp;Yunlong Wang ,&nbsp;Jiulin Wu","doi":"10.1016/j.sna.2025.116639","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their exceptional resolution, rapid response, and versatility, piezoelectric actuators (PEAs) find extensive application in high-end fields such as nano-positioning, semiconductor manufacturing, and space exploration. However, the nonlinear effects associated with creep significantly restrict the full performance potential of PEAs under extreme conditions. To address this limitation, we propose a fractional calculus-based model that effectively captures the multi-scale and complex dynamics of creep phenomena. This model incorporates only two unknown parameters, thereby simplifying the parameter identification process. Through comprehensive theoretical analysis, simulation, and experimental validation, our model has demonstrated considerable advantages in terms of accuracy and applicability, with relative error in both the frequency and time domains below 6 %. The proposed fractional creep model and its associated parameter identification technique are anticipated to enhance the long-term precision of PEAs, paving the way for future advancements in ultra-high-precision actuation technology.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"391 ","pages":"Article 116639"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel fractional-order framework for creep nonlinearity in piezoelectric actuators\",\"authors\":\"Zhongxiang Yuan ,&nbsp;Xiaoqing Li ,&nbsp;Ziyu Xiao ,&nbsp;Zhengguang Zhang ,&nbsp;Shuliu Zhou ,&nbsp;Cailin Hong ,&nbsp;Xuedong Chen ,&nbsp;Lizhan Zeng ,&nbsp;Yunlong Wang ,&nbsp;Jiulin Wu\",\"doi\":\"10.1016/j.sna.2025.116639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to their exceptional resolution, rapid response, and versatility, piezoelectric actuators (PEAs) find extensive application in high-end fields such as nano-positioning, semiconductor manufacturing, and space exploration. However, the nonlinear effects associated with creep significantly restrict the full performance potential of PEAs under extreme conditions. To address this limitation, we propose a fractional calculus-based model that effectively captures the multi-scale and complex dynamics of creep phenomena. This model incorporates only two unknown parameters, thereby simplifying the parameter identification process. Through comprehensive theoretical analysis, simulation, and experimental validation, our model has demonstrated considerable advantages in terms of accuracy and applicability, with relative error in both the frequency and time domains below 6 %. The proposed fractional creep model and its associated parameter identification technique are anticipated to enhance the long-term precision of PEAs, paving the way for future advancements in ultra-high-precision actuation technology.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"391 \",\"pages\":\"Article 116639\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424725004455\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725004455","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于其卓越的分辨率、快速响应和多功能性,压电致动器在纳米定位、半导体制造和空间探索等高端领域得到了广泛的应用。然而,在极端条件下,与蠕变相关的非线性效应极大地限制了豌豆的全部性能潜力。为了解决这一限制,我们提出了一个基于分数微积分的模型,该模型有效地捕获了蠕变现象的多尺度和复杂动力学。该模型仅包含两个未知参数,从而简化了参数识别过程。通过全面的理论分析、仿真和实验验证,我们的模型在精度和适用性方面具有相当大的优势,在频域和时域的相对误差都在6 %以下。所提出的分数蠕变模型及其相关参数识别技术有望提高豌豆的长期精度,为未来超高精度驱动技术的发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel fractional-order framework for creep nonlinearity in piezoelectric actuators
Due to their exceptional resolution, rapid response, and versatility, piezoelectric actuators (PEAs) find extensive application in high-end fields such as nano-positioning, semiconductor manufacturing, and space exploration. However, the nonlinear effects associated with creep significantly restrict the full performance potential of PEAs under extreme conditions. To address this limitation, we propose a fractional calculus-based model that effectively captures the multi-scale and complex dynamics of creep phenomena. This model incorporates only two unknown parameters, thereby simplifying the parameter identification process. Through comprehensive theoretical analysis, simulation, and experimental validation, our model has demonstrated considerable advantages in terms of accuracy and applicability, with relative error in both the frequency and time domains below 6 %. The proposed fractional creep model and its associated parameter identification technique are anticipated to enhance the long-term precision of PEAs, paving the way for future advancements in ultra-high-precision actuation technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信