在刑事司法中使用深度学习和聚类技术进行累犯预测的透明和抗偏见的人工智能框架

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Muhammed Cavus , Muhammed Nurullah Benli , Usame Altuntas , Mahmut Sari , Huseyin Ayan , Yusuf Furkan Ugurluoglu
{"title":"在刑事司法中使用深度学习和聚类技术进行累犯预测的透明和抗偏见的人工智能框架","authors":"Muhammed Cavus ,&nbsp;Muhammed Nurullah Benli ,&nbsp;Usame Altuntas ,&nbsp;Mahmut Sari ,&nbsp;Huseyin Ayan ,&nbsp;Yusuf Furkan Ugurluoglu","doi":"10.1016/j.asoc.2025.113160","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the Recidivism Clustering Network (RCN), an effective approach for predicting repeat offenses using deep learning (DL), clustering, and explainable AI (XAI). The RCN improves offender profiling for more accurate and interpretable recidivism predictions, aligning with key legal principles like fair sentencing, transparency, and non-discrimination. The RCN employs machine learning (ML) models optimized with a Keras tuner, using the Synthetic Minority Over-sampling Technique (SMOTE) to handle class imbalance. With about 75% accuracy, the model shows strong recall, identifying 10,661 recidivists but producing 4,038 false positives—indicating a trade-off between sensitivity and specificity. Beyond predictions, RCN integrates clustering methods, including k-means, principal component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE), to identify hidden patterns within offender data. Visualizations reveal distinct clusters, linking characteristics, such as age, to recidivism behaviors. SHapley Additive exPlanations (SHAP) values enhance interpretability, showing that factors like time since the last conviction and age significantly impact predictions. The RCN approach offers substantial potential for criminal justice applications by combining predictive power with actionable insights, supporting a more ethical and accountable use of ML in offender profiling and aiding in fairer recidivism prevention strategies. The code and data are publicly available on GitHub at <span><span>https://github.com/cavusmuhammed68/Recidivism-Clustering-Network-RCN-</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"176 ","pages":"Article 113160"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent and bias-resilient AI framework for recidivism prediction using deep learning and clustering techniques in criminal justice\",\"authors\":\"Muhammed Cavus ,&nbsp;Muhammed Nurullah Benli ,&nbsp;Usame Altuntas ,&nbsp;Mahmut Sari ,&nbsp;Huseyin Ayan ,&nbsp;Yusuf Furkan Ugurluoglu\",\"doi\":\"10.1016/j.asoc.2025.113160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the Recidivism Clustering Network (RCN), an effective approach for predicting repeat offenses using deep learning (DL), clustering, and explainable AI (XAI). The RCN improves offender profiling for more accurate and interpretable recidivism predictions, aligning with key legal principles like fair sentencing, transparency, and non-discrimination. The RCN employs machine learning (ML) models optimized with a Keras tuner, using the Synthetic Minority Over-sampling Technique (SMOTE) to handle class imbalance. With about 75% accuracy, the model shows strong recall, identifying 10,661 recidivists but producing 4,038 false positives—indicating a trade-off between sensitivity and specificity. Beyond predictions, RCN integrates clustering methods, including k-means, principal component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE), to identify hidden patterns within offender data. Visualizations reveal distinct clusters, linking characteristics, such as age, to recidivism behaviors. SHapley Additive exPlanations (SHAP) values enhance interpretability, showing that factors like time since the last conviction and age significantly impact predictions. The RCN approach offers substantial potential for criminal justice applications by combining predictive power with actionable insights, supporting a more ethical and accountable use of ML in offender profiling and aiding in fairer recidivism prevention strategies. The code and data are publicly available on GitHub at <span><span>https://github.com/cavusmuhammed68/Recidivism-Clustering-Network-RCN-</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"176 \",\"pages\":\"Article 113160\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625004715\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625004715","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了累犯聚类网络(RCN),这是一种使用深度学习(DL)、聚类和可解释人工智能(XAI)预测重复犯罪的有效方法。RCN改进了罪犯的特征分析,以更准确和可解释的累犯预测,与公平判决、透明度和非歧视等关键法律原则保持一致。RCN采用Keras调谐器优化的机器学习(ML)模型,使用合成少数过采样技术(SMOTE)来处理类不平衡。该模型的准确率约为75%,显示出很强的召回率,识别出10,661名累犯,但产生了4,038个假阳性——这表明了敏感性和特异性之间的权衡。除了预测之外,RCN还集成了聚类方法,包括k-means、主成分分析(PCA)和t分布随机邻居嵌入(t-SNE),以识别罪犯数据中的隐藏模式。可视化显示了不同的集群,将特征(如年龄)与累犯行为联系起来。SHapley加性解释(SHAP)值增强了可解释性,表明距离上次定罪的时间和年龄等因素显著影响预测。RCN方法通过将预测能力与可操作的见解相结合,为刑事司法应用提供了巨大的潜力,支持在罪犯分析中更加道德和负责任地使用ML,并帮助制定更公平的累犯预防策略。代码和数据可在GitHub上公开获取https://github.com/cavusmuhammed68/Recidivism-Clustering-Network-RCN-。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transparent and bias-resilient AI framework for recidivism prediction using deep learning and clustering techniques in criminal justice

Transparent and bias-resilient AI framework for recidivism prediction using deep learning and clustering techniques in criminal justice
This paper presents the Recidivism Clustering Network (RCN), an effective approach for predicting repeat offenses using deep learning (DL), clustering, and explainable AI (XAI). The RCN improves offender profiling for more accurate and interpretable recidivism predictions, aligning with key legal principles like fair sentencing, transparency, and non-discrimination. The RCN employs machine learning (ML) models optimized with a Keras tuner, using the Synthetic Minority Over-sampling Technique (SMOTE) to handle class imbalance. With about 75% accuracy, the model shows strong recall, identifying 10,661 recidivists but producing 4,038 false positives—indicating a trade-off between sensitivity and specificity. Beyond predictions, RCN integrates clustering methods, including k-means, principal component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE), to identify hidden patterns within offender data. Visualizations reveal distinct clusters, linking characteristics, such as age, to recidivism behaviors. SHapley Additive exPlanations (SHAP) values enhance interpretability, showing that factors like time since the last conviction and age significantly impact predictions. The RCN approach offers substantial potential for criminal justice applications by combining predictive power with actionable insights, supporting a more ethical and accountable use of ML in offender profiling and aiding in fairer recidivism prevention strategies. The code and data are publicly available on GitHub at https://github.com/cavusmuhammed68/Recidivism-Clustering-Network-RCN-.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信