Janus moste -磷化硼异质结构的电子结构和光电性能的双轴应变工程

IF 3 Q2 PHYSICS, CONDENSED MATTER
Xiao-Sa Xiao, You Xie, Li-Mei Hao, Qi-Chao Liu, Yu Zou, Su-Fang Wang, Tao Zhang
{"title":"Janus moste -磷化硼异质结构的电子结构和光电性能的双轴应变工程","authors":"Xiao-Sa Xiao,&nbsp;You Xie,&nbsp;Li-Mei Hao,&nbsp;Qi-Chao Liu,&nbsp;Yu Zou,&nbsp;Su-Fang Wang,&nbsp;Tao Zhang","doi":"10.1016/j.micrna.2025.208191","DOIUrl":null,"url":null,"abstract":"<div><div>2D van der Waals heterostructures (vdWHs) combining Janus transition metal dichalcogenides with boron phosphide (BP) demonstrate exceptional potential for next-generation optoelectronics. Through first-principles calculations, we systematically investigate strain-tunable electronic properties and photovoltaic performance of two distinct Janus MoSTe/BP configurations: TeMoS/BP and SMoTe/BP vdWHs. Our results reveal that both vdWHs exhibit type-II band alignment with indirect bandgaps (1.38 eV for TeMoS/BP, 0.93 eV for SMoTe/BP), transitioning to type-I semiconductor in TeMoS/BP under &gt;4 % tensile strain. Biaxial strain (−6 % to +6 %) induces significant spectral modulation: tensile strain causes 15–40 nm visible-range blueshifts with optical absorptivity reduction (12–28 %), while compressive strain induces 20–35 nm redshifts accompanied by 18–32 % peak enhancement. The TeMoS/BP vdWH achieves high power conversion efficiency (PCE) of 21.2 % at +2 % strain through optimized band alignment and strong built-in field, outperforming SMoTe/BP's maximum PCE of 11.9 % at +6 % strain. These findings establish strain-engineered Janus heterostructures as viable platforms for tunable photovoltaics and broadband optoelectronics, providing critical insights for designing high-efficiency 2D material-based energy devices.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"205 ","pages":"Article 208191"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biaxial strain engineering of electronic structure and photovoltaic performance in Janus MoSTe-boron phosphide heterostructure\",\"authors\":\"Xiao-Sa Xiao,&nbsp;You Xie,&nbsp;Li-Mei Hao,&nbsp;Qi-Chao Liu,&nbsp;Yu Zou,&nbsp;Su-Fang Wang,&nbsp;Tao Zhang\",\"doi\":\"10.1016/j.micrna.2025.208191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>2D van der Waals heterostructures (vdWHs) combining Janus transition metal dichalcogenides with boron phosphide (BP) demonstrate exceptional potential for next-generation optoelectronics. Through first-principles calculations, we systematically investigate strain-tunable electronic properties and photovoltaic performance of two distinct Janus MoSTe/BP configurations: TeMoS/BP and SMoTe/BP vdWHs. Our results reveal that both vdWHs exhibit type-II band alignment with indirect bandgaps (1.38 eV for TeMoS/BP, 0.93 eV for SMoTe/BP), transitioning to type-I semiconductor in TeMoS/BP under &gt;4 % tensile strain. Biaxial strain (−6 % to +6 %) induces significant spectral modulation: tensile strain causes 15–40 nm visible-range blueshifts with optical absorptivity reduction (12–28 %), while compressive strain induces 20–35 nm redshifts accompanied by 18–32 % peak enhancement. The TeMoS/BP vdWH achieves high power conversion efficiency (PCE) of 21.2 % at +2 % strain through optimized band alignment and strong built-in field, outperforming SMoTe/BP's maximum PCE of 11.9 % at +6 % strain. These findings establish strain-engineered Janus heterostructures as viable platforms for tunable photovoltaics and broadband optoelectronics, providing critical insights for designing high-efficiency 2D material-based energy devices.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"205 \",\"pages\":\"Article 208191\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325001207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

结合Janus过渡金属二硫族化合物和磷化硼(BP)的二维范德华异质结构(vdWHs)在下一代光电子学中表现出非凡的潜力。通过第一性原理计算,我们系统地研究了两种不同的Janus MoSTe/BP结构:TeMoS/BP和SMoTe/BP vdWHs的应变可调电子特性和光伏性能。结果表明,这两种vdWHs均表现出ii型带向,具有间接带隙(TeMoS/BP为1.38 eV, SMoTe/BP为0.93 eV),在>; 4%的拉伸应变下,在TeMoS/BP中转变为i型半导体。双轴应变(- 6%至+ 6%)引起显著的光谱调制:拉伸应变引起15-40 nm可见范围蓝移,光学吸收率降低(12 - 28%),而压缩应变引起20-35 nm红移,并伴有18 - 32%的峰增强。通过优化的波段对准和强大的内置场,TeMoS/BP vdWH在+ 2%应变下实现了21.2%的高功率转换效率(PCE),超过了SMoTe/BP在+ 6%应变下11.9%的最大PCE。这些发现建立了应变工程Janus异质结构作为可调谐光伏和宽带光电子的可行平台,为设计高效的二维材料能源设备提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biaxial strain engineering of electronic structure and photovoltaic performance in Janus MoSTe-boron phosphide heterostructure
2D van der Waals heterostructures (vdWHs) combining Janus transition metal dichalcogenides with boron phosphide (BP) demonstrate exceptional potential for next-generation optoelectronics. Through first-principles calculations, we systematically investigate strain-tunable electronic properties and photovoltaic performance of two distinct Janus MoSTe/BP configurations: TeMoS/BP and SMoTe/BP vdWHs. Our results reveal that both vdWHs exhibit type-II band alignment with indirect bandgaps (1.38 eV for TeMoS/BP, 0.93 eV for SMoTe/BP), transitioning to type-I semiconductor in TeMoS/BP under >4 % tensile strain. Biaxial strain (−6 % to +6 %) induces significant spectral modulation: tensile strain causes 15–40 nm visible-range blueshifts with optical absorptivity reduction (12–28 %), while compressive strain induces 20–35 nm redshifts accompanied by 18–32 % peak enhancement. The TeMoS/BP vdWH achieves high power conversion efficiency (PCE) of 21.2 % at +2 % strain through optimized band alignment and strong built-in field, outperforming SMoTe/BP's maximum PCE of 11.9 % at +6 % strain. These findings establish strain-engineered Janus heterostructures as viable platforms for tunable photovoltaics and broadband optoelectronics, providing critical insights for designing high-efficiency 2D material-based energy devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信