Mi Tang , Zhenhui Pan , Minghui Jin , Hengwei Zhang , Xuewei Pan , Zhiming Rao
{"title":"大肠杆菌系统代谢工程高水平生产脱氧紫素,一种天然着色剂","authors":"Mi Tang , Zhenhui Pan , Minghui Jin , Hengwei Zhang , Xuewei Pan , Zhiming Rao","doi":"10.1016/j.biortech.2025.132584","DOIUrl":null,"url":null,"abstract":"<div><div>Deoxyviolacein is a natural colorant with various biological properties, widely applied in cosmetic and pharmaceutical fields. However, current methods of deoxyviolacein production by natural producers may cause highly lethal infections in humans, limiting the sustainable production of deoxyviolacein. Here, an <span>l</span>-tryptophan-producing <em>Escherichia coli</em> strain was engineered for efficient deoxyviolacein production. First, the deoxyviolacein synthesis pathway was introduced and optimized to construct a base strain. Second, multi-modular engineering was conducted for further optimization, including engineering of the glucose uptake system and central metabolism and enhancement of precursor supply. To coordinate metabolic flux distribution, the optimal expression of <em>aroG</em><sup>Q151F</sup>, <em>ppsA</em> and <em>tktA</em> was tuned by generating libraries of tunable intergenic regions coupled with a novel <span>l</span>-tryptophan biosensor. Finally, the best-performing strain successfully accumulated 12.18 g/L of deoxyviolacein from glucose, showing a competitive deoxyviolacein titer reported to date and providing a paradigm for the production of value-added aromatic compounds in <em>E. coli</em>.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"431 ","pages":"Article 132584"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems metabolic engineering of Escherichia coli for the high-level production of deoxyviolacein, a natural colorant\",\"authors\":\"Mi Tang , Zhenhui Pan , Minghui Jin , Hengwei Zhang , Xuewei Pan , Zhiming Rao\",\"doi\":\"10.1016/j.biortech.2025.132584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deoxyviolacein is a natural colorant with various biological properties, widely applied in cosmetic and pharmaceutical fields. However, current methods of deoxyviolacein production by natural producers may cause highly lethal infections in humans, limiting the sustainable production of deoxyviolacein. Here, an <span>l</span>-tryptophan-producing <em>Escherichia coli</em> strain was engineered for efficient deoxyviolacein production. First, the deoxyviolacein synthesis pathway was introduced and optimized to construct a base strain. Second, multi-modular engineering was conducted for further optimization, including engineering of the glucose uptake system and central metabolism and enhancement of precursor supply. To coordinate metabolic flux distribution, the optimal expression of <em>aroG</em><sup>Q151F</sup>, <em>ppsA</em> and <em>tktA</em> was tuned by generating libraries of tunable intergenic regions coupled with a novel <span>l</span>-tryptophan biosensor. Finally, the best-performing strain successfully accumulated 12.18 g/L of deoxyviolacein from glucose, showing a competitive deoxyviolacein titer reported to date and providing a paradigm for the production of value-added aromatic compounds in <em>E. coli</em>.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"431 \",\"pages\":\"Article 132584\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425005504\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005504","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Systems metabolic engineering of Escherichia coli for the high-level production of deoxyviolacein, a natural colorant
Deoxyviolacein is a natural colorant with various biological properties, widely applied in cosmetic and pharmaceutical fields. However, current methods of deoxyviolacein production by natural producers may cause highly lethal infections in humans, limiting the sustainable production of deoxyviolacein. Here, an l-tryptophan-producing Escherichia coli strain was engineered for efficient deoxyviolacein production. First, the deoxyviolacein synthesis pathway was introduced and optimized to construct a base strain. Second, multi-modular engineering was conducted for further optimization, including engineering of the glucose uptake system and central metabolism and enhancement of precursor supply. To coordinate metabolic flux distribution, the optimal expression of aroGQ151F, ppsA and tktA was tuned by generating libraries of tunable intergenic regions coupled with a novel l-tryptophan biosensor. Finally, the best-performing strain successfully accumulated 12.18 g/L of deoxyviolacein from glucose, showing a competitive deoxyviolacein titer reported to date and providing a paradigm for the production of value-added aromatic compounds in E. coli.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.