Qin Chen , Jinfeng Ge , Huaqing Xie , Xingcheng Xu , Yanqing Yang
{"title":"大型语言模型在中国劳动力市场发挥作用","authors":"Qin Chen , Jinfeng Ge , Huaqing Xie , Xingcheng Xu , Yanqing Yang","doi":"10.1016/j.chieco.2025.102413","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the potential impacts of large language models (LLMs) on the Chinese labor market. We analyze occupational exposure to LLM capabilities by incorporating human expertise and LLM classifications, following the methodology of Eloundou et al. (2023). The results indicate a positive correlation between occupational exposure and both wage levels and experience premiums at the occupation level. This suggests that higher-paying and experience-intensive jobs may face greater exposure risks from LLM-powered software. We then aggregate occupational exposure at the industry level to obtain industrial exposure scores. Both occupational and industrial exposure scores align with expert assessments. Our empirical analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization hypothesis. We present a stylized theoretical framework to better understand this deviation from previous digital technologies. By incorporating entropy-based information theory into the task-based framework, we propose an AI learning theory that reveals a different pattern of LLM impacts compared to the routinization hypothesis.</div></div>","PeriodicalId":48285,"journal":{"name":"中国经济评论","volume":"92 ","pages":"Article 102413"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language models at work in China’s labor market\",\"authors\":\"Qin Chen , Jinfeng Ge , Huaqing Xie , Xingcheng Xu , Yanqing Yang\",\"doi\":\"10.1016/j.chieco.2025.102413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the potential impacts of large language models (LLMs) on the Chinese labor market. We analyze occupational exposure to LLM capabilities by incorporating human expertise and LLM classifications, following the methodology of Eloundou et al. (2023). The results indicate a positive correlation between occupational exposure and both wage levels and experience premiums at the occupation level. This suggests that higher-paying and experience-intensive jobs may face greater exposure risks from LLM-powered software. We then aggregate occupational exposure at the industry level to obtain industrial exposure scores. Both occupational and industrial exposure scores align with expert assessments. Our empirical analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization hypothesis. We present a stylized theoretical framework to better understand this deviation from previous digital technologies. By incorporating entropy-based information theory into the task-based framework, we propose an AI learning theory that reveals a different pattern of LLM impacts compared to the routinization hypothesis.</div></div>\",\"PeriodicalId\":48285,\"journal\":{\"name\":\"中国经济评论\",\"volume\":\"92 \",\"pages\":\"Article 102413\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国经济评论\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043951X25000719\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国经济评论","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043951X25000719","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Large language models at work in China’s labor market
This paper explores the potential impacts of large language models (LLMs) on the Chinese labor market. We analyze occupational exposure to LLM capabilities by incorporating human expertise and LLM classifications, following the methodology of Eloundou et al. (2023). The results indicate a positive correlation between occupational exposure and both wage levels and experience premiums at the occupation level. This suggests that higher-paying and experience-intensive jobs may face greater exposure risks from LLM-powered software. We then aggregate occupational exposure at the industry level to obtain industrial exposure scores. Both occupational and industrial exposure scores align with expert assessments. Our empirical analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization hypothesis. We present a stylized theoretical framework to better understand this deviation from previous digital technologies. By incorporating entropy-based information theory into the task-based framework, we propose an AI learning theory that reveals a different pattern of LLM impacts compared to the routinization hypothesis.
期刊介绍:
The China Economic Review publishes original works of scholarship which add to the knowledge of the economy of China and to economies as a discipline. We seek, in particular, papers dealing with policy, performance and institutional change. Empirical papers normally use a formal model, a data set, and standard statistical techniques. Submissions are subjected to double-blind peer review.