大型语言模型在中国劳动力市场发挥作用

IF 5.2 1区 经济学 Q1 ECONOMICS
Qin Chen , Jinfeng Ge , Huaqing Xie , Xingcheng Xu , Yanqing Yang
{"title":"大型语言模型在中国劳动力市场发挥作用","authors":"Qin Chen ,&nbsp;Jinfeng Ge ,&nbsp;Huaqing Xie ,&nbsp;Xingcheng Xu ,&nbsp;Yanqing Yang","doi":"10.1016/j.chieco.2025.102413","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the potential impacts of large language models (LLMs) on the Chinese labor market. We analyze occupational exposure to LLM capabilities by incorporating human expertise and LLM classifications, following the methodology of Eloundou et al. (2023). The results indicate a positive correlation between occupational exposure and both wage levels and experience premiums at the occupation level. This suggests that higher-paying and experience-intensive jobs may face greater exposure risks from LLM-powered software. We then aggregate occupational exposure at the industry level to obtain industrial exposure scores. Both occupational and industrial exposure scores align with expert assessments. Our empirical analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization hypothesis. We present a stylized theoretical framework to better understand this deviation from previous digital technologies. By incorporating entropy-based information theory into the task-based framework, we propose an AI learning theory that reveals a different pattern of LLM impacts compared to the routinization hypothesis.</div></div>","PeriodicalId":48285,"journal":{"name":"中国经济评论","volume":"92 ","pages":"Article 102413"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language models at work in China’s labor market\",\"authors\":\"Qin Chen ,&nbsp;Jinfeng Ge ,&nbsp;Huaqing Xie ,&nbsp;Xingcheng Xu ,&nbsp;Yanqing Yang\",\"doi\":\"10.1016/j.chieco.2025.102413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the potential impacts of large language models (LLMs) on the Chinese labor market. We analyze occupational exposure to LLM capabilities by incorporating human expertise and LLM classifications, following the methodology of Eloundou et al. (2023). The results indicate a positive correlation between occupational exposure and both wage levels and experience premiums at the occupation level. This suggests that higher-paying and experience-intensive jobs may face greater exposure risks from LLM-powered software. We then aggregate occupational exposure at the industry level to obtain industrial exposure scores. Both occupational and industrial exposure scores align with expert assessments. Our empirical analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization hypothesis. We present a stylized theoretical framework to better understand this deviation from previous digital technologies. By incorporating entropy-based information theory into the task-based framework, we propose an AI learning theory that reveals a different pattern of LLM impacts compared to the routinization hypothesis.</div></div>\",\"PeriodicalId\":48285,\"journal\":{\"name\":\"中国经济评论\",\"volume\":\"92 \",\"pages\":\"Article 102413\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国经济评论\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043951X25000719\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国经济评论","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043951X25000719","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了大型语言模型(llm)对中国劳动力市场的潜在影响。我们根据Eloundou等人(2023)的方法,结合人类专业知识和法学硕士分类,分析了LLM能力的职业暴露。结果表明,职业暴露与职业水平的工资水平和经验溢价均呈正相关。这表明高收入和经验密集型工作可能面临llm驱动软件的更大风险。然后,我们在行业水平上汇总职业暴露以获得行业暴露得分。职业和工业暴露得分与专家评估一致。我们的实证分析也证明了法学硕士的明显影响,这偏离了常规化假设。我们提出了一个程式化的理论框架,以更好地理解这种偏离以往的数字技术。通过将基于熵的信息理论整合到基于任务的框架中,我们提出了一种人工智能学习理论,该理论揭示了与常规化假设相比,LLM影响的不同模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language models at work in China’s labor market
This paper explores the potential impacts of large language models (LLMs) on the Chinese labor market. We analyze occupational exposure to LLM capabilities by incorporating human expertise and LLM classifications, following the methodology of Eloundou et al. (2023). The results indicate a positive correlation between occupational exposure and both wage levels and experience premiums at the occupation level. This suggests that higher-paying and experience-intensive jobs may face greater exposure risks from LLM-powered software. We then aggregate occupational exposure at the industry level to obtain industrial exposure scores. Both occupational and industrial exposure scores align with expert assessments. Our empirical analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization hypothesis. We present a stylized theoretical framework to better understand this deviation from previous digital technologies. By incorporating entropy-based information theory into the task-based framework, we propose an AI learning theory that reveals a different pattern of LLM impacts compared to the routinization hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国经济评论
中国经济评论 ECONOMICS-
CiteScore
10.60
自引率
4.40%
发文量
380
期刊介绍: The China Economic Review publishes original works of scholarship which add to the knowledge of the economy of China and to economies as a discipline. We seek, in particular, papers dealing with policy, performance and institutional change. Empirical papers normally use a formal model, a data set, and standard statistical techniques. Submissions are subjected to double-blind peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信