{"title":"烯二炔的c - α - c6热环化","authors":"Haonan Cheng, Wenbo Wang, Yun Zeng, Houjun Zhang, Xiaohua Huang, Fangxu Pu, Xiaofan Zhang, Aiguo Hu* and Yun Ding*, ","doi":"10.1021/acs.joc.4c0312410.1021/acs.joc.4c03124","DOIUrl":null,"url":null,"abstract":"<p >Canonical thermal cycloaromatizations (Bergman, C<sup>1</sup>–C<sup>6</sup>; Myers-Saito, C<sup>2</sup>–C<sup>7</sup>; Schmittel, C<sup>2</sup>–C<sup>6</sup>; Schreiner-Pascal, C<sup>1</sup>–C<sup>5</sup>) are limited to the formation of five- or six-membered rings, while the formation of larger rings from enediyne (or enyne-allenes) has no precedent experimental exploration. Herein, we present a novel thermal cyclization of enediyne, leading to the formation of a stable seven-membered cyclization product. The structure of this product was elucidated by using NMR and single-crystal X-ray diffraction techniques. The presence of a maleic hydrazide moiety is postulated to facilitate the proton transfer, resulting in the rearrangement of enediyne to enyne-allene, culminating in ring closure through C<sup>α</sup>–C<sup>6</sup> cyclization. The reaction mechanism was further explored by using density functional theory (DFT), revealing a low activation barrier for the C<sup>α</sup>–C<sup>6</sup> cyclization at 19.6 kcal/mol. The newly formed seven-membered ring exhibits strong Möbius aromaticity, as confirmed by calculations of the nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID). In the subsequent reaction, the fusion of the oxazolidin-2-one ring and the elimination of the isobutene molecule release a significant amount of energy, further driving the formation of the final product.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"90 17","pages":"5828–5837 5828–5837"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Cα–C6 Cyclization of Enediynes\",\"authors\":\"Haonan Cheng, Wenbo Wang, Yun Zeng, Houjun Zhang, Xiaohua Huang, Fangxu Pu, Xiaofan Zhang, Aiguo Hu* and Yun Ding*, \",\"doi\":\"10.1021/acs.joc.4c0312410.1021/acs.joc.4c03124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Canonical thermal cycloaromatizations (Bergman, C<sup>1</sup>–C<sup>6</sup>; Myers-Saito, C<sup>2</sup>–C<sup>7</sup>; Schmittel, C<sup>2</sup>–C<sup>6</sup>; Schreiner-Pascal, C<sup>1</sup>–C<sup>5</sup>) are limited to the formation of five- or six-membered rings, while the formation of larger rings from enediyne (or enyne-allenes) has no precedent experimental exploration. Herein, we present a novel thermal cyclization of enediyne, leading to the formation of a stable seven-membered cyclization product. The structure of this product was elucidated by using NMR and single-crystal X-ray diffraction techniques. The presence of a maleic hydrazide moiety is postulated to facilitate the proton transfer, resulting in the rearrangement of enediyne to enyne-allene, culminating in ring closure through C<sup>α</sup>–C<sup>6</sup> cyclization. The reaction mechanism was further explored by using density functional theory (DFT), revealing a low activation barrier for the C<sup>α</sup>–C<sup>6</sup> cyclization at 19.6 kcal/mol. The newly formed seven-membered ring exhibits strong Möbius aromaticity, as confirmed by calculations of the nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID). In the subsequent reaction, the fusion of the oxazolidin-2-one ring and the elimination of the isobutene molecule release a significant amount of energy, further driving the formation of the final product.</p>\",\"PeriodicalId\":57,\"journal\":{\"name\":\"Journal of Organic Chemistry\",\"volume\":\"90 17\",\"pages\":\"5828–5837 5828–5837\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.joc.4c03124\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.4c03124","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Canonical thermal cycloaromatizations (Bergman, C1–C6; Myers-Saito, C2–C7; Schmittel, C2–C6; Schreiner-Pascal, C1–C5) are limited to the formation of five- or six-membered rings, while the formation of larger rings from enediyne (or enyne-allenes) has no precedent experimental exploration. Herein, we present a novel thermal cyclization of enediyne, leading to the formation of a stable seven-membered cyclization product. The structure of this product was elucidated by using NMR and single-crystal X-ray diffraction techniques. The presence of a maleic hydrazide moiety is postulated to facilitate the proton transfer, resulting in the rearrangement of enediyne to enyne-allene, culminating in ring closure through Cα–C6 cyclization. The reaction mechanism was further explored by using density functional theory (DFT), revealing a low activation barrier for the Cα–C6 cyclization at 19.6 kcal/mol. The newly formed seven-membered ring exhibits strong Möbius aromaticity, as confirmed by calculations of the nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID). In the subsequent reaction, the fusion of the oxazolidin-2-one ring and the elimination of the isobutene molecule release a significant amount of energy, further driving the formation of the final product.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.