{"title":"o - glcn酰化降低了蛋白质组的溶解度并调节了人类细胞中生物分子凝聚物的形成","authors":"Senhan Xu, Kejun Yin, Xing Xu, Longping Fu, Ronghu Wu","doi":"10.1038/s41467-025-59371-4","DOIUrl":null,"url":null,"abstract":"<p>O-GlcNAcylation plays critical roles in the regulation of protein functions and cellular activities, including protein interactions with other macromolecules. While the formation of biomolecular condensates (or biocondensates) regulated by O-GlcNAcylation in a few individual proteins has been reported, systematic investigation of O-GlcNAcylation on the regulation of biocondensate formation remains to be explored. Here we systematically study the roles of O-GlcNAcylation in regulating protein solubility and its impacts on RNA-protein condensates using mass spectrometry-based chemoproteomics. Unexpectedly, we observe a system-wide decrease in the solubility of proteins modified by O-GlcNAcylation, with glycoproteins involved in focal adhesion and actin binding exhibiting the most significant decrease. Furthermore, O-GlcNAcylation sites located in disordered regions and with fewer acidic and aromatic residues nearby are related to a greater drop in protein solubility. Additionally, we discover that a specific group of O-GlcNAcylation events promotes the dissociation of RNA-protein condensates under heat stress, while some enhance the formation of RNA-protein condensates during the recovery phase. Using site mutagenesis, inhibition of O-GlcNAc transferase, and fluorescence microscopy, we validate that O-GlcNAcylation regulates the formation of biocondensates for YTHDF3 and NUFIP2. This work advances our understanding of the functions of protein O-GlcNAcylation and its roles in the formation of biomolecular condensates.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"46 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O-GlcNAcylation reduces proteome solubility and regulates the formation of biomolecular condensates in human cells\",\"authors\":\"Senhan Xu, Kejun Yin, Xing Xu, Longping Fu, Ronghu Wu\",\"doi\":\"10.1038/s41467-025-59371-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>O-GlcNAcylation plays critical roles in the regulation of protein functions and cellular activities, including protein interactions with other macromolecules. While the formation of biomolecular condensates (or biocondensates) regulated by O-GlcNAcylation in a few individual proteins has been reported, systematic investigation of O-GlcNAcylation on the regulation of biocondensate formation remains to be explored. Here we systematically study the roles of O-GlcNAcylation in regulating protein solubility and its impacts on RNA-protein condensates using mass spectrometry-based chemoproteomics. Unexpectedly, we observe a system-wide decrease in the solubility of proteins modified by O-GlcNAcylation, with glycoproteins involved in focal adhesion and actin binding exhibiting the most significant decrease. Furthermore, O-GlcNAcylation sites located in disordered regions and with fewer acidic and aromatic residues nearby are related to a greater drop in protein solubility. Additionally, we discover that a specific group of O-GlcNAcylation events promotes the dissociation of RNA-protein condensates under heat stress, while some enhance the formation of RNA-protein condensates during the recovery phase. Using site mutagenesis, inhibition of O-GlcNAc transferase, and fluorescence microscopy, we validate that O-GlcNAcylation regulates the formation of biocondensates for YTHDF3 and NUFIP2. This work advances our understanding of the functions of protein O-GlcNAcylation and its roles in the formation of biomolecular condensates.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59371-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59371-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
O-GlcNAcylation reduces proteome solubility and regulates the formation of biomolecular condensates in human cells
O-GlcNAcylation plays critical roles in the regulation of protein functions and cellular activities, including protein interactions with other macromolecules. While the formation of biomolecular condensates (or biocondensates) regulated by O-GlcNAcylation in a few individual proteins has been reported, systematic investigation of O-GlcNAcylation on the regulation of biocondensate formation remains to be explored. Here we systematically study the roles of O-GlcNAcylation in regulating protein solubility and its impacts on RNA-protein condensates using mass spectrometry-based chemoproteomics. Unexpectedly, we observe a system-wide decrease in the solubility of proteins modified by O-GlcNAcylation, with glycoproteins involved in focal adhesion and actin binding exhibiting the most significant decrease. Furthermore, O-GlcNAcylation sites located in disordered regions and with fewer acidic and aromatic residues nearby are related to a greater drop in protein solubility. Additionally, we discover that a specific group of O-GlcNAcylation events promotes the dissociation of RNA-protein condensates under heat stress, while some enhance the formation of RNA-protein condensates during the recovery phase. Using site mutagenesis, inhibition of O-GlcNAc transferase, and fluorescence microscopy, we validate that O-GlcNAcylation regulates the formation of biocondensates for YTHDF3 and NUFIP2. This work advances our understanding of the functions of protein O-GlcNAcylation and its roles in the formation of biomolecular condensates.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.