定制锌离子溶剂化结构,提高锌-溴液流电池的耐用性和效率

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Norah S. Alghamdi, Dmitrii Rakov, Xiyue Peng, Jaeho Lee, Yongxin Huang, Xingchen Yang, Shuangbin Zhang, Ian R. Gentle, Lianzhou Wang, Bin Luo
{"title":"定制锌离子溶剂化结构,提高锌-溴液流电池的耐用性和效率","authors":"Norah S. Alghamdi,&nbsp;Dmitrii Rakov,&nbsp;Xiyue Peng,&nbsp;Jaeho Lee,&nbsp;Yongxin Huang,&nbsp;Xingchen Yang,&nbsp;Shuangbin Zhang,&nbsp;Ian R. Gentle,&nbsp;Lianzhou Wang,&nbsp;Bin Luo","doi":"10.1002/anie.202502739","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-bromine flow batteries (ZBFBs) are among the most appealing technologies for large-scale stationary energy storage due to their scalability, cost-effectiveness, safety and sustainability. However, their long-term durability is challenged by issues like the hydrogen evolution reaction (HER) and dendritic zinc electroplating. Herein, we address these challenges by reshaping the Zn<sup>2+</sup> ion solvation structures in zinc bromide (ZnBr<sub>2</sub>) aqueous electrolytes using a robust hydrogen bond acceptor as a cosolvent additive. Our findings highlight the critical role of interactions within the first and second Zn<sup>2+</sup> solvation shells in determining electrochemical performance. By selectively incorporating a low volume percentage of organic additive into the second coordination shell of Zn<sup>2+</sup>, we achieve effective proton capture, electrolyte pH stabilization during the Zn<sup>0</sup> electroplating, and mitigation of ion transport resistance. This approach prevents the formation of a passivation interphase layer on the electrode surface, which typically occurs with higher additive concentrations, leading to increased interphase resistance and cell polarization. This work opens a new avenue in modulating Zn<sup>2+</sup> reactivity and stability through precise solvation structure design, enabling efficient and reversible Zn<sup>0/2+</sup> plating/stripping in aqueous electrolytes with suppressed H<sub>2</sub> evolution. These findings pave the way for the development of commercially viable, high-performance ZBFBs for energy storage applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 27","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202502739","citationCount":"0","resultStr":"{\"title\":\"Tailoring Zn-ion Solvation Structures for Enhanced Durability and Efficiency in Zinc–Bromine Flow Batteries\",\"authors\":\"Norah S. Alghamdi,&nbsp;Dmitrii Rakov,&nbsp;Xiyue Peng,&nbsp;Jaeho Lee,&nbsp;Yongxin Huang,&nbsp;Xingchen Yang,&nbsp;Shuangbin Zhang,&nbsp;Ian R. Gentle,&nbsp;Lianzhou Wang,&nbsp;Bin Luo\",\"doi\":\"10.1002/anie.202502739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous zinc-bromine flow batteries (ZBFBs) are among the most appealing technologies for large-scale stationary energy storage due to their scalability, cost-effectiveness, safety and sustainability. However, their long-term durability is challenged by issues like the hydrogen evolution reaction (HER) and dendritic zinc electroplating. Herein, we address these challenges by reshaping the Zn<sup>2+</sup> ion solvation structures in zinc bromide (ZnBr<sub>2</sub>) aqueous electrolytes using a robust hydrogen bond acceptor as a cosolvent additive. Our findings highlight the critical role of interactions within the first and second Zn<sup>2+</sup> solvation shells in determining electrochemical performance. By selectively incorporating a low volume percentage of organic additive into the second coordination shell of Zn<sup>2+</sup>, we achieve effective proton capture, electrolyte pH stabilization during the Zn<sup>0</sup> electroplating, and mitigation of ion transport resistance. This approach prevents the formation of a passivation interphase layer on the electrode surface, which typically occurs with higher additive concentrations, leading to increased interphase resistance and cell polarization. This work opens a new avenue in modulating Zn<sup>2+</sup> reactivity and stability through precise solvation structure design, enabling efficient and reversible Zn<sup>0/2+</sup> plating/stripping in aqueous electrolytes with suppressed H<sub>2</sub> evolution. These findings pave the way for the development of commercially viable, high-performance ZBFBs for energy storage applications.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 27\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202502739\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502739\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502739","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于其可扩展性、成本效益、安全性和可持续性,含水锌溴液流电池(ZBFBs)是大规模固定储能技术中最具吸引力的技术之一。然而,它们的长期耐久性受到析氢反应(HER)和枝晶锌电镀等问题的挑战。在此,我们通过使用强大的氢键受体作为助溶剂添加剂重塑锌溴化锌(ZnBr2)水溶液中的Zn2+离子溶剂化结构来解决这些挑战。我们的研究结果强调了第一和第二Zn2+溶剂化壳层之间的相互作用在决定电化学性能方面的关键作用。通过选择性地将低体积百分比的有机添加剂加入到第二配位壳中,我们实现了有效的质子捕获,锌电镀过程中的电解质pH稳定,并减轻了离子传输阻力。这种方法可以防止在电极表面形成钝化间相层,这种钝化间相层通常在较高的添加剂浓度下发生,导致间相电阻、粘度和细胞极化增加。这项工作为通过精确的溶剂化结构设计来调节Zn2+的反应性和稳定性开辟了一条新的途径,使zn1 /2+在水溶液中高效、可逆地循环而不产生氢气。这些发现为开发商业上可行的高性能zbfb储能应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Zn-ion Solvation Structures for Enhanced Durability and Efficiency in Zinc–Bromine Flow Batteries

Tailoring Zn-ion Solvation Structures for Enhanced Durability and Efficiency in Zinc–Bromine Flow Batteries

Aqueous zinc-bromine flow batteries (ZBFBs) are among the most appealing technologies for large-scale stationary energy storage due to their scalability, cost-effectiveness, safety and sustainability. However, their long-term durability is challenged by issues like the hydrogen evolution reaction (HER) and dendritic zinc electroplating. Herein, we address these challenges by reshaping the Zn2+ ion solvation structures in zinc bromide (ZnBr2) aqueous electrolytes using a robust hydrogen bond acceptor as a cosolvent additive. Our findings highlight the critical role of interactions within the first and second Zn2+ solvation shells in determining electrochemical performance. By selectively incorporating a low volume percentage of organic additive into the second coordination shell of Zn2+, we achieve effective proton capture, electrolyte pH stabilization during the Zn0 electroplating, and mitigation of ion transport resistance. This approach prevents the formation of a passivation interphase layer on the electrode surface, which typically occurs with higher additive concentrations, leading to increased interphase resistance and cell polarization. This work opens a new avenue in modulating Zn2+ reactivity and stability through precise solvation structure design, enabling efficient and reversible Zn0/2+ plating/stripping in aqueous electrolytes with suppressed H2 evolution. These findings pave the way for the development of commercially viable, high-performance ZBFBs for energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信