{"title":"ATP6V0A4的功能获得突变导致V-ATPase活性增强的原发性远端肾小管碱中毒。","authors":"Si-Qi Peng,Qian-Qian Wu,Wan-Yi Wang,Yi-Lin Zhang,Rui-Ning Zhou,Jun Liao,Jin-Xuan Wei,Yan Yang,Wen Shi,Jun-Lan Yang,Xiao-Xu Wang,Zhi-Yuan Wei,Jia-Xuan Sun,Lu Huang,Hong Fan,Hui Cai,Cheng-Kun Wang,Xin-Hua Li,Ting-Song Li,Bi-Cheng Liu,Xiao-Liang Zhang,Bin Wang","doi":"10.1172/jci188807","DOIUrl":null,"url":null,"abstract":"The ATP6V0A4 gene encodes the a4 subunit of Vacuolar H+-ATPase (V-ATPase), which mediates hydrogen ion transport across the membrane. Previous studies have suggested that mutations in ATP6V0A4 consistently result in a loss of function (LOF), impairing the hydrogen ion transport efficacy of V-ATPase and leading to distal renal tubular acidosis (dRTA) and sensorineural hearing loss. Here, we identified a 32-year-old male patient and his father, both of whom harbored a heterozygous ATP6V0A4 p.V512L mutation, and both exhibited with hypochloremic metabolic alkalosis, acidic urine and hypokalemia. Through a series of protein structural analyses and functional experiments, the V512L mutation was confirmed as a gain-of-function (GOF) mutation in the ATP6V0A4 gene. V512-a4 increased a4 subunit expression abundance by enhancing V512L-a4 stability and reducing its degradation, which in turn potentiated V-ATPase's capacity to acidify the tubular lumen, leading to acidic urine and metabolic alkalosis. Through mutant V512L-a4 subunit structure-based virtual and experimental screening, we discovered F351 (C25H26FN3O2S), a small-molecule inhibitor specifically targeting the V512L-a4 mutant. In conclusion, we identify a GOF mutation in the ATP6V0A4 gene, broadening its phenotypic and mutational spectrum, and provide valuable insights into potential therapeutic approaches for diseases associated with ATP6V0A4 mutations.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gain-of-function mutation in ATP6V0A4 drives primary distal renal tubular alkalosis with enhanced V-ATPase activity.\",\"authors\":\"Si-Qi Peng,Qian-Qian Wu,Wan-Yi Wang,Yi-Lin Zhang,Rui-Ning Zhou,Jun Liao,Jin-Xuan Wei,Yan Yang,Wen Shi,Jun-Lan Yang,Xiao-Xu Wang,Zhi-Yuan Wei,Jia-Xuan Sun,Lu Huang,Hong Fan,Hui Cai,Cheng-Kun Wang,Xin-Hua Li,Ting-Song Li,Bi-Cheng Liu,Xiao-Liang Zhang,Bin Wang\",\"doi\":\"10.1172/jci188807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ATP6V0A4 gene encodes the a4 subunit of Vacuolar H+-ATPase (V-ATPase), which mediates hydrogen ion transport across the membrane. Previous studies have suggested that mutations in ATP6V0A4 consistently result in a loss of function (LOF), impairing the hydrogen ion transport efficacy of V-ATPase and leading to distal renal tubular acidosis (dRTA) and sensorineural hearing loss. Here, we identified a 32-year-old male patient and his father, both of whom harbored a heterozygous ATP6V0A4 p.V512L mutation, and both exhibited with hypochloremic metabolic alkalosis, acidic urine and hypokalemia. Through a series of protein structural analyses and functional experiments, the V512L mutation was confirmed as a gain-of-function (GOF) mutation in the ATP6V0A4 gene. V512-a4 increased a4 subunit expression abundance by enhancing V512L-a4 stability and reducing its degradation, which in turn potentiated V-ATPase's capacity to acidify the tubular lumen, leading to acidic urine and metabolic alkalosis. Through mutant V512L-a4 subunit structure-based virtual and experimental screening, we discovered F351 (C25H26FN3O2S), a small-molecule inhibitor specifically targeting the V512L-a4 mutant. In conclusion, we identify a GOF mutation in the ATP6V0A4 gene, broadening its phenotypic and mutational spectrum, and provide valuable insights into potential therapeutic approaches for diseases associated with ATP6V0A4 mutations.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci188807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci188807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A gain-of-function mutation in ATP6V0A4 drives primary distal renal tubular alkalosis with enhanced V-ATPase activity.
The ATP6V0A4 gene encodes the a4 subunit of Vacuolar H+-ATPase (V-ATPase), which mediates hydrogen ion transport across the membrane. Previous studies have suggested that mutations in ATP6V0A4 consistently result in a loss of function (LOF), impairing the hydrogen ion transport efficacy of V-ATPase and leading to distal renal tubular acidosis (dRTA) and sensorineural hearing loss. Here, we identified a 32-year-old male patient and his father, both of whom harbored a heterozygous ATP6V0A4 p.V512L mutation, and both exhibited with hypochloremic metabolic alkalosis, acidic urine and hypokalemia. Through a series of protein structural analyses and functional experiments, the V512L mutation was confirmed as a gain-of-function (GOF) mutation in the ATP6V0A4 gene. V512-a4 increased a4 subunit expression abundance by enhancing V512L-a4 stability and reducing its degradation, which in turn potentiated V-ATPase's capacity to acidify the tubular lumen, leading to acidic urine and metabolic alkalosis. Through mutant V512L-a4 subunit structure-based virtual and experimental screening, we discovered F351 (C25H26FN3O2S), a small-molecule inhibitor specifically targeting the V512L-a4 mutant. In conclusion, we identify a GOF mutation in the ATP6V0A4 gene, broadening its phenotypic and mutational spectrum, and provide valuable insights into potential therapeutic approaches for diseases associated with ATP6V0A4 mutations.