{"title":"利用表面声波和流动控制提高液滴微流体中单颗粒的包封性。","authors":"Chunhua He,Huasheng Zhuo,Canfeng Yang,Jianxin Wang,Xian Jiang,Fan Li,Chengxu Lin,Hai Yang,Tuying Yong,Xiangliang Yang,Zhiyong Liu,Yan Ma,Lei Nie,Guanglan Liao,Tielin Shi","doi":"10.1039/d4lc00787e","DOIUrl":null,"url":null,"abstract":"Target particle encapsulation is crucial in droplet microfluidics for high-throughput applications like single-cell sequencing and drug screening. However, it faces limitations, with encapsulation rates of only 10% to 30% due to suspension density and the inherent functionality of the chip being restricted by the Poisson distribution. This leads to reagent waste and reduced effectiveness in applications requiring ultra-high multiplexing or extensive particle analysis, due to the massive empty droplets. Here we propose a droplet microfluidic system integrating surface acoustic wave (SAW) and sheath flow control. Suspensions of varying concentrations within the channel are initially pre-focused by sheath fluid, and then acoustically focused into a linear arrangement by SAW. Spacing between particles can be regulated by modulating the sheath fluid, ensuring sequential encapsulation of cells or beads in individual droplets. Thermal shock generated by the SAW, particle and droplet frequency, and particle encapsulation ratio are all elaborately evaluated. The results demonstrate that our system reaches an exciting single-bead packing efficiency of up to 78%, and achieves a packing rate of more than 60% for both high and low concentrations of solutions for polystyrene microspheres, magnetic beads and H22 cells, 6 times higher than the theoretical upper limit of the conventional method and 1.8 times higher than the Poisson distribution. More importantly, our system is designed to be free of structural and parametric constraints, which is quite important in future practical application. Thus, our on-chip particle focusing control method and droplet microfluidic system provide great potential in biological applications needing a high single-particle encapsulation ratio in limited partitions, such as ultra-high multiplex digital biomolecular detection, single-cell analysis, drug screening, and single exosome detection.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"136 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevating single-particle encapsulation in droplet microfluidics by utilizing surface acoustic wave and flow control.\",\"authors\":\"Chunhua He,Huasheng Zhuo,Canfeng Yang,Jianxin Wang,Xian Jiang,Fan Li,Chengxu Lin,Hai Yang,Tuying Yong,Xiangliang Yang,Zhiyong Liu,Yan Ma,Lei Nie,Guanglan Liao,Tielin Shi\",\"doi\":\"10.1039/d4lc00787e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target particle encapsulation is crucial in droplet microfluidics for high-throughput applications like single-cell sequencing and drug screening. However, it faces limitations, with encapsulation rates of only 10% to 30% due to suspension density and the inherent functionality of the chip being restricted by the Poisson distribution. This leads to reagent waste and reduced effectiveness in applications requiring ultra-high multiplexing or extensive particle analysis, due to the massive empty droplets. Here we propose a droplet microfluidic system integrating surface acoustic wave (SAW) and sheath flow control. Suspensions of varying concentrations within the channel are initially pre-focused by sheath fluid, and then acoustically focused into a linear arrangement by SAW. Spacing between particles can be regulated by modulating the sheath fluid, ensuring sequential encapsulation of cells or beads in individual droplets. Thermal shock generated by the SAW, particle and droplet frequency, and particle encapsulation ratio are all elaborately evaluated. The results demonstrate that our system reaches an exciting single-bead packing efficiency of up to 78%, and achieves a packing rate of more than 60% for both high and low concentrations of solutions for polystyrene microspheres, magnetic beads and H22 cells, 6 times higher than the theoretical upper limit of the conventional method and 1.8 times higher than the Poisson distribution. More importantly, our system is designed to be free of structural and parametric constraints, which is quite important in future practical application. Thus, our on-chip particle focusing control method and droplet microfluidic system provide great potential in biological applications needing a high single-particle encapsulation ratio in limited partitions, such as ultra-high multiplex digital biomolecular detection, single-cell analysis, drug screening, and single exosome detection.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00787e\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00787e","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Elevating single-particle encapsulation in droplet microfluidics by utilizing surface acoustic wave and flow control.
Target particle encapsulation is crucial in droplet microfluidics for high-throughput applications like single-cell sequencing and drug screening. However, it faces limitations, with encapsulation rates of only 10% to 30% due to suspension density and the inherent functionality of the chip being restricted by the Poisson distribution. This leads to reagent waste and reduced effectiveness in applications requiring ultra-high multiplexing or extensive particle analysis, due to the massive empty droplets. Here we propose a droplet microfluidic system integrating surface acoustic wave (SAW) and sheath flow control. Suspensions of varying concentrations within the channel are initially pre-focused by sheath fluid, and then acoustically focused into a linear arrangement by SAW. Spacing between particles can be regulated by modulating the sheath fluid, ensuring sequential encapsulation of cells or beads in individual droplets. Thermal shock generated by the SAW, particle and droplet frequency, and particle encapsulation ratio are all elaborately evaluated. The results demonstrate that our system reaches an exciting single-bead packing efficiency of up to 78%, and achieves a packing rate of more than 60% for both high and low concentrations of solutions for polystyrene microspheres, magnetic beads and H22 cells, 6 times higher than the theoretical upper limit of the conventional method and 1.8 times higher than the Poisson distribution. More importantly, our system is designed to be free of structural and parametric constraints, which is quite important in future practical application. Thus, our on-chip particle focusing control method and droplet microfluidic system provide great potential in biological applications needing a high single-particle encapsulation ratio in limited partitions, such as ultra-high multiplex digital biomolecular detection, single-cell analysis, drug screening, and single exosome detection.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.