一种监测动脉血栓形成的新型即时护理设备的开发。

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2025-04-30 DOI:10.1039/d5lc00061k
Christopher A Bresette,Viviana Claveria,David N Ku
{"title":"一种监测动脉血栓形成的新型即时护理设备的开发。","authors":"Christopher A Bresette,Viviana Claveria,David N Ku","doi":"10.1039/d5lc00061k","DOIUrl":null,"url":null,"abstract":"Arterial thrombosis is a leading cause of heart attacks and strokes, representing a significant global health challenge. Microfluidic research studies have identified high shear stress, a thrombotic surface, and the presence of von Willebrand factor (vWF) and platelets as key conditions necessary for formation of arterial thrombi, termed shear-induced platelet aggregation (SIPA). However, current point-of-care (POC) assays of platelet function fail to incorporate these conditions, often relying on artificial agonists alone for stimulation. This study introduces a novel POC device designed to replicate high shear arterial thrombosis to create large platelet-rich clots reliably with small blood samples. The device was tested with blood from 10 healthy donors, with and without treatment with antiplatelet agents ASA, 2MeSAMPS and eptifibatide. The POC endpoint was compared with the PFA-100 to demonstrate novelty. A novel POC was successfully developed that can run with 5 mL of blood, had an intra-patient variability <15% and could distinguish differences in the healthy subjects tested. The POC was sensitive to antiplatelet agents acetyl-salicylic acid, 2-MeSAMPS and eptifibatide, showing an increase in end volume, a proxy for occlusion time, after treatment (p < 0.001). The novel POC device provides a unique endpoint that is uncorrelated with PFA-100 results. The ability of the novel POC to differentiate individual's thrombotic potential underscores its utility for clinical applications such as diagnosing platelet dysfunction, quantifying thrombotic risk, and optimizing antiplatelet therapies. This novel approach bridges the gap between research assays and practical clinical tools, offering a significant advancement in personalized cardiovascular care.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"8 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel point-of-care device to monitor arterial thrombosis.\",\"authors\":\"Christopher A Bresette,Viviana Claveria,David N Ku\",\"doi\":\"10.1039/d5lc00061k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arterial thrombosis is a leading cause of heart attacks and strokes, representing a significant global health challenge. Microfluidic research studies have identified high shear stress, a thrombotic surface, and the presence of von Willebrand factor (vWF) and platelets as key conditions necessary for formation of arterial thrombi, termed shear-induced platelet aggregation (SIPA). However, current point-of-care (POC) assays of platelet function fail to incorporate these conditions, often relying on artificial agonists alone for stimulation. This study introduces a novel POC device designed to replicate high shear arterial thrombosis to create large platelet-rich clots reliably with small blood samples. The device was tested with blood from 10 healthy donors, with and without treatment with antiplatelet agents ASA, 2MeSAMPS and eptifibatide. The POC endpoint was compared with the PFA-100 to demonstrate novelty. A novel POC was successfully developed that can run with 5 mL of blood, had an intra-patient variability <15% and could distinguish differences in the healthy subjects tested. The POC was sensitive to antiplatelet agents acetyl-salicylic acid, 2-MeSAMPS and eptifibatide, showing an increase in end volume, a proxy for occlusion time, after treatment (p < 0.001). The novel POC device provides a unique endpoint that is uncorrelated with PFA-100 results. The ability of the novel POC to differentiate individual's thrombotic potential underscores its utility for clinical applications such as diagnosing platelet dysfunction, quantifying thrombotic risk, and optimizing antiplatelet therapies. This novel approach bridges the gap between research assays and practical clinical tools, offering a significant advancement in personalized cardiovascular care.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5lc00061k\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00061k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

动脉血栓形成是心脏病发作和中风的主要原因,是一项重大的全球健康挑战。微流体研究已经确定了高剪切应力,血栓表面,血管性血液病因子(vWF)和血小板的存在是形成动脉血栓的关键条件,称为剪切诱导血小板聚集(SIPA)。然而,目前的血小板功能即时检测(POC)不能纳入这些条件,通常仅依靠人工激动剂进行刺激。本研究介绍了一种新的POC装置,旨在复制高剪切动脉血栓形成,用少量血液样本可靠地产生富含血小板的大块血栓。该装置用10名健康献血者的血液进行了测试,接受和不接受抗血小板药物ASA、2MeSAMPS和依替巴肽的治疗。将POC终点与PFA-100进行比较以证明其新颖性。成功开发了一种新的POC,可以用5毫升血液运行,患者内部变异性<15%,并且可以区分健康受试者的差异。POC对抗血小板药物乙酰水杨酸、2-MeSAMPS和依替巴肽敏感,治疗后终末容积(闭塞时间的代表)增加(p < 0.001)。新型POC设备提供了与PFA-100结果无关的唯一终点。新型POC区分个体血栓形成潜力的能力强调了其临床应用的实用性,如诊断血小板功能障碍、量化血栓形成风险和优化抗血小板治疗。这种新颖的方法弥合了研究分析和实际临床工具之间的差距,为个性化心血管护理提供了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a novel point-of-care device to monitor arterial thrombosis.
Arterial thrombosis is a leading cause of heart attacks and strokes, representing a significant global health challenge. Microfluidic research studies have identified high shear stress, a thrombotic surface, and the presence of von Willebrand factor (vWF) and platelets as key conditions necessary for formation of arterial thrombi, termed shear-induced platelet aggregation (SIPA). However, current point-of-care (POC) assays of platelet function fail to incorporate these conditions, often relying on artificial agonists alone for stimulation. This study introduces a novel POC device designed to replicate high shear arterial thrombosis to create large platelet-rich clots reliably with small blood samples. The device was tested with blood from 10 healthy donors, with and without treatment with antiplatelet agents ASA, 2MeSAMPS and eptifibatide. The POC endpoint was compared with the PFA-100 to demonstrate novelty. A novel POC was successfully developed that can run with 5 mL of blood, had an intra-patient variability <15% and could distinguish differences in the healthy subjects tested. The POC was sensitive to antiplatelet agents acetyl-salicylic acid, 2-MeSAMPS and eptifibatide, showing an increase in end volume, a proxy for occlusion time, after treatment (p < 0.001). The novel POC device provides a unique endpoint that is uncorrelated with PFA-100 results. The ability of the novel POC to differentiate individual's thrombotic potential underscores its utility for clinical applications such as diagnosing platelet dysfunction, quantifying thrombotic risk, and optimizing antiplatelet therapies. This novel approach bridges the gap between research assays and practical clinical tools, offering a significant advancement in personalized cardiovascular care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信