(K,Na) nbo3基压电陶瓷的缺陷偶极子梯度设计,实现可控的超高弯曲变形

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongjie Zhang, Binquan Wang, Jie Wang, Qichao Li, Zhenhua Ma, Tiannan Yang, Yiping Guo
{"title":"(K,Na) nbo3基压电陶瓷的缺陷偶极子梯度设计,实现可控的超高弯曲变形","authors":"Hongjie Zhang, Binquan Wang, Jie Wang, Qichao Li, Zhenhua Ma, Tiannan Yang, Yiping Guo","doi":"10.1016/j.jmst.2025.04.008","DOIUrl":null,"url":null,"abstract":"Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications. As a new strategy for fabricating bending actuators, constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement, yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization. Herein we propose a new strategy to fabricate barium-doped (K,Na)NbO<sub>3</sub> piezoelectric bending actuators with controllable gradient distribution of highly stable &lt;110&gt;-oriented (<span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">K</mi><mo is=\"true\">/</mo><mtext is=\"true\">Na</mtext></mrow><msup is=\"true\"><mrow is=\"true\"></mrow><mo is=\"true\">′</mo></msup></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">K</mi><mo is=\"true\">/</mo><mtext is=\"true\">Na</mtext></mrow><msup is=\"true\"><mrow is=\"true\"></mrow><mo is=\"true\">′</mo></msup></msubsup></math></script></span> – <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">·</mo><mo is=\"true\">·</mo></mrow></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">·</mo><mo is=\"true\">·</mo></mrow></msubsup></math></script></span>) defect dipoles, achieving a centimeter-level displacement performance of 1.2 cm under ± 200 V sinusoidal AC excitations. Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction, confirming that the defect dipole concentration gradient, rather than oxygen vacancy migration drives the large bending deformation. Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of &lt;110&gt;-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output. We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications, providing new insights into the design of piezoceramic actuators.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"20 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect dipole gradient design in (K,Na)NbO3-based piezoelectric ceramics enabling controllable ultrahigh bending deformation\",\"authors\":\"Hongjie Zhang, Binquan Wang, Jie Wang, Qichao Li, Zhenhua Ma, Tiannan Yang, Yiping Guo\",\"doi\":\"10.1016/j.jmst.2025.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications. As a new strategy for fabricating bending actuators, constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement, yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization. Herein we propose a new strategy to fabricate barium-doped (K,Na)NbO<sub>3</sub> piezoelectric bending actuators with controllable gradient distribution of highly stable &lt;110&gt;-oriented (<span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">K</mi><mo is=\\\"true\\\">/</mo><mtext is=\\\"true\\\">Na</mtext></mrow><msup is=\\\"true\\\"><mrow is=\\\"true\\\"></mrow><mo is=\\\"true\\\">′</mo></msup></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">K</mi><mo is=\\\"true\\\">/</mo><mtext is=\\\"true\\\">Na</mtext></mrow><msup is=\\\"true\\\"><mrow is=\\\"true\\\"></mrow><mo is=\\\"true\\\">′</mo></msup></msubsup></math></script></span> – <span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mo is=\\\"true\\\">·</mo></mrow></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mo is=\\\"true\\\">·</mo></mrow></msubsup></math></script></span>) defect dipoles, achieving a centimeter-level displacement performance of 1.2 cm under ± 200 V sinusoidal AC excitations. Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction, confirming that the defect dipole concentration gradient, rather than oxygen vacancy migration drives the large bending deformation. Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of &lt;110&gt;-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output. We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications, providing new insights into the design of piezoceramic actuators.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.04.008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

压电陶瓷弯曲驱动器在各种高科技应用中起着举足轻重的作用。构建缺陷偶极子浓度梯度作为一种新的弯曲致动器制造策略,已成为提高电弯曲位移的有效策略,但由于碱挥发不可控,其可重复性难以实现。在此,我们提出了一种具有可控梯度分布的高稳定<;110>;取向(VK/Na ' VK/Na ' - VO··VO··)缺陷偶极子的掺钡(K,Na)NbO3压电弯曲致动器的新策略,在±200 V正弦交流激励下实现了1.2 cm的厘米级位移性能。采用缺陷梯度设计但氧空位含量较低的试样具有较大的弯曲位移和良好的无泄漏导通的疲劳稳定性,证实了导致大弯曲变形的是缺陷偶极子浓度梯度,而不是氧空位迁移。实验分析和相场模拟表明,正交条纹畴内<;110>;取向缺陷偶极子的精细浓度设计对位移输出的可控和稳定起着至关重要的作用。我们验证了弯曲驱动器在压电触觉反馈和压电微泵应用中的可行性,为压电陶瓷驱动器的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Defect dipole gradient design in (K,Na)NbO3-based piezoelectric ceramics enabling controllable ultrahigh bending deformation

Defect dipole gradient design in (K,Na)NbO3-based piezoelectric ceramics enabling controllable ultrahigh bending deformation
Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications. As a new strategy for fabricating bending actuators, constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement, yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization. Herein we propose a new strategy to fabricate barium-doped (K,Na)NbO3 piezoelectric bending actuators with controllable gradient distribution of highly stable <110>-oriented (VK/NaVO··) defect dipoles, achieving a centimeter-level displacement performance of 1.2 cm under ± 200 V sinusoidal AC excitations. Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction, confirming that the defect dipole concentration gradient, rather than oxygen vacancy migration drives the large bending deformation. Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of <110>-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output. We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications, providing new insights into the design of piezoceramic actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信