{"title":"(K,Na) nbo3基压电陶瓷的缺陷偶极子梯度设计,实现可控的超高弯曲变形","authors":"Hongjie Zhang, Binquan Wang, Jie Wang, Qichao Li, Zhenhua Ma, Tiannan Yang, Yiping Guo","doi":"10.1016/j.jmst.2025.04.008","DOIUrl":null,"url":null,"abstract":"Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications. As a new strategy for fabricating bending actuators, constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement, yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization. Herein we propose a new strategy to fabricate barium-doped (K,Na)NbO<sub>3</sub> piezoelectric bending actuators with controllable gradient distribution of highly stable <110>-oriented (<span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">K</mi><mo is=\"true\">/</mo><mtext is=\"true\">Na</mtext></mrow><msup is=\"true\"><mrow is=\"true\"></mrow><mo is=\"true\">′</mo></msup></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">K</mi><mo is=\"true\">/</mo><mtext is=\"true\">Na</mtext></mrow><msup is=\"true\"><mrow is=\"true\"></mrow><mo is=\"true\">′</mo></msup></msubsup></math></script></span> – <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">·</mo><mo is=\"true\">·</mo></mrow></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">·</mo><mo is=\"true\">·</mo></mrow></msubsup></math></script></span>) defect dipoles, achieving a centimeter-level displacement performance of 1.2 cm under ± 200 V sinusoidal AC excitations. Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction, confirming that the defect dipole concentration gradient, rather than oxygen vacancy migration drives the large bending deformation. Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of <110>-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output. We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications, providing new insights into the design of piezoceramic actuators.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"20 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect dipole gradient design in (K,Na)NbO3-based piezoelectric ceramics enabling controllable ultrahigh bending deformation\",\"authors\":\"Hongjie Zhang, Binquan Wang, Jie Wang, Qichao Li, Zhenhua Ma, Tiannan Yang, Yiping Guo\",\"doi\":\"10.1016/j.jmst.2025.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications. As a new strategy for fabricating bending actuators, constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement, yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization. Herein we propose a new strategy to fabricate barium-doped (K,Na)NbO<sub>3</sub> piezoelectric bending actuators with controllable gradient distribution of highly stable <110>-oriented (<span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">K</mi><mo is=\\\"true\\\">/</mo><mtext is=\\\"true\\\">Na</mtext></mrow><msup is=\\\"true\\\"><mrow is=\\\"true\\\"></mrow><mo is=\\\"true\\\">′</mo></msup></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">K</mi><mo is=\\\"true\\\">/</mo><mtext is=\\\"true\\\">Na</mtext></mrow><msup is=\\\"true\\\"><mrow is=\\\"true\\\"></mrow><mo is=\\\"true\\\">′</mo></msup></msubsup></math></script></span> – <span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mo is=\\\"true\\\">·</mo></mrow></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">·</mo><mo is=\\\"true\\\">·</mo></mrow></msubsup></math></script></span>) defect dipoles, achieving a centimeter-level displacement performance of 1.2 cm under ± 200 V sinusoidal AC excitations. Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction, confirming that the defect dipole concentration gradient, rather than oxygen vacancy migration drives the large bending deformation. Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of <110>-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output. We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications, providing new insights into the design of piezoceramic actuators.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.04.008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications. As a new strategy for fabricating bending actuators, constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement, yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization. Herein we propose a new strategy to fabricate barium-doped (K,Na)NbO3 piezoelectric bending actuators with controllable gradient distribution of highly stable <110>-oriented ( – ) defect dipoles, achieving a centimeter-level displacement performance of 1.2 cm under ± 200 V sinusoidal AC excitations. Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction, confirming that the defect dipole concentration gradient, rather than oxygen vacancy migration drives the large bending deformation. Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of <110>-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output. We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications, providing new insights into the design of piezoceramic actuators.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.