模糊集三向逼近的非对称方法

IF 10.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xuerong Zhao;Duoqian Miao;Yiyu Yao;Witold Pedrycz
{"title":"模糊集三向逼近的非对称方法","authors":"Xuerong Zhao;Duoqian Miao;Yiyu Yao;Witold Pedrycz","doi":"10.1109/TFUZZ.2025.3565700","DOIUrl":null,"url":null,"abstract":"The three-way approximation of fuzzy sets represents membership values using a three-valued set <inline-formula> <tex-math>$\\lbrace \\mathbf{1}, \\mathbf{m}, \\mathbf{0}\\rbrace$</tex-math></inline-formula>, where 1 indicates total belongingness, 0 total nonbelongingness, and m an intermediate state. This approach elevates values of membership function above a threshold <inline-formula> <tex-math>$\\alpha$</tex-math></inline-formula> to 1, reduces those below <inline-formula> <tex-math>$\\beta$</tex-math></inline-formula> to 0, and assigns the remaining ones to an intermediate value m. A key challenge lies in determining the thresholds <inline-formula> <tex-math>$\\alpha$</tex-math></inline-formula> and <inline-formula> <tex-math>$\\beta$</tex-math></inline-formula> and selecting the value of m, as existing models often lack analytical solutions and fail to fully explore the relationship between m and membership structures. This study introduces an asymmetric three-way approximation model for fuzzy sets, removing the constraint <inline-formula> <tex-math>$\\alpha + \\beta = 1$</tex-math></inline-formula>. Analytical formulas are derived for the thresholds <inline-formula> <tex-math>$ \\alpha $</tex-math></inline-formula> and <inline-formula><tex-math>$ \\beta $</tex-math></inline-formula> by minimizing information loss, and the relationship between m and membership structures is thoroughly examined. An adaptive optimizer is proposed to learn the approximate optimal value of m by minimizing the information loss. The experimental results show that information loss decreases initially before increasing as m grows. Besides, our model achieves the best classification across most datasets.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"33 7","pages":"2348-2360"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Asymmetric Approach to Three-Way Approximation of Fuzzy Sets\",\"authors\":\"Xuerong Zhao;Duoqian Miao;Yiyu Yao;Witold Pedrycz\",\"doi\":\"10.1109/TFUZZ.2025.3565700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The three-way approximation of fuzzy sets represents membership values using a three-valued set <inline-formula> <tex-math>$\\\\lbrace \\\\mathbf{1}, \\\\mathbf{m}, \\\\mathbf{0}\\\\rbrace$</tex-math></inline-formula>, where 1 indicates total belongingness, 0 total nonbelongingness, and m an intermediate state. This approach elevates values of membership function above a threshold <inline-formula> <tex-math>$\\\\alpha$</tex-math></inline-formula> to 1, reduces those below <inline-formula> <tex-math>$\\\\beta$</tex-math></inline-formula> to 0, and assigns the remaining ones to an intermediate value m. A key challenge lies in determining the thresholds <inline-formula> <tex-math>$\\\\alpha$</tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\beta$</tex-math></inline-formula> and selecting the value of m, as existing models often lack analytical solutions and fail to fully explore the relationship between m and membership structures. This study introduces an asymmetric three-way approximation model for fuzzy sets, removing the constraint <inline-formula> <tex-math>$\\\\alpha + \\\\beta = 1$</tex-math></inline-formula>. Analytical formulas are derived for the thresholds <inline-formula> <tex-math>$ \\\\alpha $</tex-math></inline-formula> and <inline-formula><tex-math>$ \\\\beta $</tex-math></inline-formula> by minimizing information loss, and the relationship between m and membership structures is thoroughly examined. An adaptive optimizer is proposed to learn the approximate optimal value of m by minimizing the information loss. The experimental results show that information loss decreases initially before increasing as m grows. Besides, our model achieves the best classification across most datasets.\",\"PeriodicalId\":13212,\"journal\":{\"name\":\"IEEE Transactions on Fuzzy Systems\",\"volume\":\"33 7\",\"pages\":\"2348-2360\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980445/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980445/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

模糊集的三向逼近使用三值集$\lbrace \mathbf{1}, \mathbf{m}, \mathbf{0}\rbrace$表示成员值,其中1表示总归属,0表示总非归属,m表示中间状态。该方法将阈值$\alpha$以上的隶属度函数值提升为1,将低于$\beta$的隶属度函数值降低为0,并将其余的隶属度函数值分配给一个中间值m。关键的挑战在于确定阈值$\alpha$和$\beta$并选择m的值,因为现有模型往往缺乏解析解,未能充分探索m与隶属度结构之间的关系。本研究引入了模糊集的非对称三向近似模型,消除了约束$\alpha + \beta = 1$。通过最小化信息损失,导出了阈值$ \alpha $和$ \beta $的解析公式,并彻底检查了m和成员结构之间的关系。提出了一种自适应优化器,通过最小化信息损失来学习m的近似最优值。实验结果表明,随着m的增大,信息损失先减小后增大。此外,我们的模型在大多数数据集上实现了最佳分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Asymmetric Approach to Three-Way Approximation of Fuzzy Sets
The three-way approximation of fuzzy sets represents membership values using a three-valued set $\lbrace \mathbf{1}, \mathbf{m}, \mathbf{0}\rbrace$, where 1 indicates total belongingness, 0 total nonbelongingness, and m an intermediate state. This approach elevates values of membership function above a threshold $\alpha$ to 1, reduces those below $\beta$ to 0, and assigns the remaining ones to an intermediate value m. A key challenge lies in determining the thresholds $\alpha$ and $\beta$ and selecting the value of m, as existing models often lack analytical solutions and fail to fully explore the relationship between m and membership structures. This study introduces an asymmetric three-way approximation model for fuzzy sets, removing the constraint $\alpha + \beta = 1$. Analytical formulas are derived for the thresholds $ \alpha $ and $ \beta $ by minimizing information loss, and the relationship between m and membership structures is thoroughly examined. An adaptive optimizer is proposed to learn the approximate optimal value of m by minimizing the information loss. The experimental results show that information loss decreases initially before increasing as m grows. Besides, our model achieves the best classification across most datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems 工程技术-工程:电子与电气
CiteScore
20.50
自引率
13.40%
发文量
517
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信