在活细胞中实现复杂的核酸回路

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiajia Sun, Xiewei Xiong, Wei Lai, Zhongdong Wu, Heming Wang, Lei Yang, Niannian Xue, Qunyan Yao, Guangqi Song, Yicheng Zhao, Li Li, Fei Wang, Chunhai Fan, Hao Pei
{"title":"在活细胞中实现复杂的核酸回路","authors":"Jiajia Sun,&nbsp;Xiewei Xiong,&nbsp;Wei Lai,&nbsp;Zhongdong Wu,&nbsp;Heming Wang,&nbsp;Lei Yang,&nbsp;Niannian Xue,&nbsp;Qunyan Yao,&nbsp;Guangqi Song,&nbsp;Yicheng Zhao,&nbsp;Li Li,&nbsp;Fei Wang,&nbsp;Chunhai Fan,&nbsp;Hao Pei","doi":"10.1126/sciadv.adv6512","DOIUrl":null,"url":null,"abstract":"<div >Synthetic nucleic acid–based computing has demonstrated complex computational capabilities in vitro. However, translating these circuits into living cells remains challenging because of instability and cellular interference. We introduce an allosteric strand exchange (ASE) strategy for complex intracellular computing. Leveraging conformational cooperativity to regulate strand exchange, ASE offers a modular platform for designing intracellular circuits with flexible programmability. We engineer a scalable circuit architecture based on ASE that can execute AND and OR logic and scale to an eight-input expression. We demonstrate ASE-based circuits can detect messenger RNAs with high specificity in mammalian cells via AND logic computation. The capacity of ASE-based circuits to accept messenger RNAs as inputs enables integration of endogenous cellular information for efficient multi-input information processing, demonstrated by a multi-input molecular classifier monitoring key cell reprogramming events. Reprogramming ASE-based circuit to interface with CRISPR-Cas9 enables programmable control of Cas9-targeting activity for gene editing, highlighting their potential for advancing intracellular biocomputation.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 18","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv6512","citationCount":"0","resultStr":"{\"title\":\"Implementing complex nucleic acid circuits in living cells\",\"authors\":\"Jiajia Sun,&nbsp;Xiewei Xiong,&nbsp;Wei Lai,&nbsp;Zhongdong Wu,&nbsp;Heming Wang,&nbsp;Lei Yang,&nbsp;Niannian Xue,&nbsp;Qunyan Yao,&nbsp;Guangqi Song,&nbsp;Yicheng Zhao,&nbsp;Li Li,&nbsp;Fei Wang,&nbsp;Chunhai Fan,&nbsp;Hao Pei\",\"doi\":\"10.1126/sciadv.adv6512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Synthetic nucleic acid–based computing has demonstrated complex computational capabilities in vitro. However, translating these circuits into living cells remains challenging because of instability and cellular interference. We introduce an allosteric strand exchange (ASE) strategy for complex intracellular computing. Leveraging conformational cooperativity to regulate strand exchange, ASE offers a modular platform for designing intracellular circuits with flexible programmability. We engineer a scalable circuit architecture based on ASE that can execute AND and OR logic and scale to an eight-input expression. We demonstrate ASE-based circuits can detect messenger RNAs with high specificity in mammalian cells via AND logic computation. The capacity of ASE-based circuits to accept messenger RNAs as inputs enables integration of endogenous cellular information for efficient multi-input information processing, demonstrated by a multi-input molecular classifier monitoring key cell reprogramming events. Reprogramming ASE-based circuit to interface with CRISPR-Cas9 enables programmable control of Cas9-targeting activity for gene editing, highlighting their potential for advancing intracellular biocomputation.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adv6512\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adv6512\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv6512","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于合成核酸的计算已经在体外证明了复杂的计算能力。然而,由于不稳定性和细胞干扰,将这些电路转化为活细胞仍然具有挑战性。我们介绍了一种变构链交换(ASE)策略,用于复杂的细胞内计算。利用构象协同性来调节链交换,ASE为设计具有灵活可编程性的细胞内电路提供了模块化平台。我们设计了一个基于ASE的可扩展电路架构,可以执行AND和OR逻辑,并扩展到8个输入表达式。我们证明基于ase的电路可以通过AND逻辑计算在哺乳动物细胞中检测具有高特异性的信使rna。基于ase的电路接受信使rna作为输入的能力,使内源性细胞信息集成为有效的多输入信息处理,多输入分子分类器监测关键细胞重编程事件证明了这一点。将基于ase的电路与CRISPR-Cas9接口重新编程,可以对cas9靶向活性进行基因编辑的可编程控制,突出了它们在推进细胞内生物计算方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Implementing complex nucleic acid circuits in living cells

Implementing complex nucleic acid circuits in living cells
Synthetic nucleic acid–based computing has demonstrated complex computational capabilities in vitro. However, translating these circuits into living cells remains challenging because of instability and cellular interference. We introduce an allosteric strand exchange (ASE) strategy for complex intracellular computing. Leveraging conformational cooperativity to regulate strand exchange, ASE offers a modular platform for designing intracellular circuits with flexible programmability. We engineer a scalable circuit architecture based on ASE that can execute AND and OR logic and scale to an eight-input expression. We demonstrate ASE-based circuits can detect messenger RNAs with high specificity in mammalian cells via AND logic computation. The capacity of ASE-based circuits to accept messenger RNAs as inputs enables integration of endogenous cellular information for efficient multi-input information processing, demonstrated by a multi-input molecular classifier monitoring key cell reprogramming events. Reprogramming ASE-based circuit to interface with CRISPR-Cas9 enables programmable control of Cas9-targeting activity for gene editing, highlighting their potential for advancing intracellular biocomputation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信