Xiangxin Dang, Shujia Chen, Ali Elias Acha, Lei Wu, Damiano Pasini
{"title":"折纸与kirigami相结合的闭合曲面的形状与拓扑变形","authors":"Xiangxin Dang, Shujia Chen, Ali Elias Acha, Lei Wu, Damiano Pasini","doi":"10.1126/sciadv.ads5659","DOIUrl":null,"url":null,"abstract":"<div >A closed surface is generally more resistant to deformation and shape changes than an open surface. An empty closed box, for example, is stiffer and more stable than when it is open. The presence of an opening makes it less constrained, more deformable, and easier to morph, as demonstrated by several studies on open-surface morphing across patterns, materials, and scales. Here, we present a platform to morph closed surfaces with bistability that harnesses a balanced integration of origami and kirigami principles. By harmonizing panel rotation around creases nearly tangent to the closed surface and panel rotation around hinges nearly perpendicular to the closed surface, we show that origami-kirigami assemblages can shape-morph between a cube and a sphere, scale between spheres of dissimilar size, and change topology between a sphere and a torus, with programmed bistability. The framework offers a promising strategy for designing bistable reconfigurable structures and metamaterials with enclosed configurations.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 18","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads5659","citationCount":"0","resultStr":"{\"title\":\"Shape and topology morphing of closed surfaces integrating origami and kirigami\",\"authors\":\"Xiangxin Dang, Shujia Chen, Ali Elias Acha, Lei Wu, Damiano Pasini\",\"doi\":\"10.1126/sciadv.ads5659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >A closed surface is generally more resistant to deformation and shape changes than an open surface. An empty closed box, for example, is stiffer and more stable than when it is open. The presence of an opening makes it less constrained, more deformable, and easier to morph, as demonstrated by several studies on open-surface morphing across patterns, materials, and scales. Here, we present a platform to morph closed surfaces with bistability that harnesses a balanced integration of origami and kirigami principles. By harmonizing panel rotation around creases nearly tangent to the closed surface and panel rotation around hinges nearly perpendicular to the closed surface, we show that origami-kirigami assemblages can shape-morph between a cube and a sphere, scale between spheres of dissimilar size, and change topology between a sphere and a torus, with programmed bistability. The framework offers a promising strategy for designing bistable reconfigurable structures and metamaterials with enclosed configurations.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads5659\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads5659\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads5659","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Shape and topology morphing of closed surfaces integrating origami and kirigami
A closed surface is generally more resistant to deformation and shape changes than an open surface. An empty closed box, for example, is stiffer and more stable than when it is open. The presence of an opening makes it less constrained, more deformable, and easier to morph, as demonstrated by several studies on open-surface morphing across patterns, materials, and scales. Here, we present a platform to morph closed surfaces with bistability that harnesses a balanced integration of origami and kirigami principles. By harmonizing panel rotation around creases nearly tangent to the closed surface and panel rotation around hinges nearly perpendicular to the closed surface, we show that origami-kirigami assemblages can shape-morph between a cube and a sphere, scale between spheres of dissimilar size, and change topology between a sphere and a torus, with programmed bistability. The framework offers a promising strategy for designing bistable reconfigurable structures and metamaterials with enclosed configurations.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.