折纸与kirigami相结合的闭合曲面的形状与拓扑变形

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiangxin Dang, Shujia Chen, Ali Elias Acha, Lei Wu, Damiano Pasini
{"title":"折纸与kirigami相结合的闭合曲面的形状与拓扑变形","authors":"Xiangxin Dang,&nbsp;Shujia Chen,&nbsp;Ali Elias Acha,&nbsp;Lei Wu,&nbsp;Damiano Pasini","doi":"10.1126/sciadv.ads5659","DOIUrl":null,"url":null,"abstract":"<div >A closed surface is generally more resistant to deformation and shape changes than an open surface. An empty closed box, for example, is stiffer and more stable than when it is open. The presence of an opening makes it less constrained, more deformable, and easier to morph, as demonstrated by several studies on open-surface morphing across patterns, materials, and scales. Here, we present a platform to morph closed surfaces with bistability that harnesses a balanced integration of origami and kirigami principles. By harmonizing panel rotation around creases nearly tangent to the closed surface and panel rotation around hinges nearly perpendicular to the closed surface, we show that origami-kirigami assemblages can shape-morph between a cube and a sphere, scale between spheres of dissimilar size, and change topology between a sphere and a torus, with programmed bistability. The framework offers a promising strategy for designing bistable reconfigurable structures and metamaterials with enclosed configurations.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 18","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads5659","citationCount":"0","resultStr":"{\"title\":\"Shape and topology morphing of closed surfaces integrating origami and kirigami\",\"authors\":\"Xiangxin Dang,&nbsp;Shujia Chen,&nbsp;Ali Elias Acha,&nbsp;Lei Wu,&nbsp;Damiano Pasini\",\"doi\":\"10.1126/sciadv.ads5659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >A closed surface is generally more resistant to deformation and shape changes than an open surface. An empty closed box, for example, is stiffer and more stable than when it is open. The presence of an opening makes it less constrained, more deformable, and easier to morph, as demonstrated by several studies on open-surface morphing across patterns, materials, and scales. Here, we present a platform to morph closed surfaces with bistability that harnesses a balanced integration of origami and kirigami principles. By harmonizing panel rotation around creases nearly tangent to the closed surface and panel rotation around hinges nearly perpendicular to the closed surface, we show that origami-kirigami assemblages can shape-morph between a cube and a sphere, scale between spheres of dissimilar size, and change topology between a sphere and a torus, with programmed bistability. The framework offers a promising strategy for designing bistable reconfigurable structures and metamaterials with enclosed configurations.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads5659\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads5659\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads5659","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

一个封闭的表面通常比一个开放的表面更能抵抗变形和形状变化。例如,一个封闭的空盒子比打开的盒子更坚固、更稳定。开口的存在使其不受约束,更容易变形,更容易变形,正如几项关于开放表面变形的研究所证明的那样,这些变形涉及图案、材料和尺度。在这里,我们提出了一个平台来变形闭合表面的双稳定性,利用折纸和kirigami原理的平衡整合。通过协调与封闭表面相切的折痕周围的面板旋转和与封闭表面垂直的铰链周围的面板旋转,我们证明了折纸-基里伽米组合可以在立方体和球体之间变形,在不同大小的球体之间缩放,并在球体和环面之间改变拓扑结构,具有编程双稳定性。该框架为设计双稳态可重构结构和具有封闭构型的超材料提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shape and topology morphing of closed surfaces integrating origami and kirigami

Shape and topology morphing of closed surfaces integrating origami and kirigami
A closed surface is generally more resistant to deformation and shape changes than an open surface. An empty closed box, for example, is stiffer and more stable than when it is open. The presence of an opening makes it less constrained, more deformable, and easier to morph, as demonstrated by several studies on open-surface morphing across patterns, materials, and scales. Here, we present a platform to morph closed surfaces with bistability that harnesses a balanced integration of origami and kirigami principles. By harmonizing panel rotation around creases nearly tangent to the closed surface and panel rotation around hinges nearly perpendicular to the closed surface, we show that origami-kirigami assemblages can shape-morph between a cube and a sphere, scale between spheres of dissimilar size, and change topology between a sphere and a torus, with programmed bistability. The framework offers a promising strategy for designing bistable reconfigurable structures and metamaterials with enclosed configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信