Dylan J. Terstege, Yi Ren, Bo Young Ahn, Heewon Seo, Kabirat Adigun, Alzheimer’s Disease Neuroimaging Initiative, Liisa A. M. Galea, Derya Sargin, Jonathan R. Epp
{"title":"阿尔茨海默病性别依赖性易感性的原因是脾后皮层小白蛋白中间神经元受损","authors":"Dylan J. Terstege, Yi Ren, Bo Young Ahn, Heewon Seo, Kabirat Adigun, Alzheimer’s Disease Neuroimaging Initiative, Liisa A. M. Galea, Derya Sargin, Jonathan R. Epp","doi":"10.1126/sciadv.adt8976","DOIUrl":null,"url":null,"abstract":"<div >Alzheimer’s disease is a debilitating neurodegenerative disorder with no cure and few treatment options. In early stages of Alzheimer’s disease, impaired metabolism and functional connectivity of the retrosplenial cortex strongly predict future cognitive impairments. Therefore, understanding Alzheimer’s disease–related deficits in the retrosplenial cortex is critical for understanding the origins of cognitive impairment and identifying early treatment targets. Using the 5xFAD mouse model, we discovered early, sex-dependent alterations in parvalbumin-interneuron transcriptomic profiles. This corresponded with impaired parvalbumin-interneuron activity, which was sufficient to induce cognitive impairments and dysregulate retrosplenial functional connectivity. In fMRI scans from patients with mild cognitive impairment and Alzheimer’s disease, we observed a similar sex-dependent dysregulation of retrosplenial cortex functional connectivity and, in postmortem tissue from subjects with Alzheimer’s disease, a loss of parvalbumin interneurons. Reversal of cognitive deficits by stimulation of parvalbumin interneurons in the retrosplenial cortex suggests that this may serve as a promising therapeutic strategy.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 18","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt8976","citationCount":"0","resultStr":"{\"title\":\"Impaired parvalbumin interneurons in the retrosplenial cortex as the cause of sex-dependent vulnerability in Alzheimer’s disease\",\"authors\":\"Dylan J. Terstege, Yi Ren, Bo Young Ahn, Heewon Seo, Kabirat Adigun, Alzheimer’s Disease Neuroimaging Initiative, Liisa A. M. Galea, Derya Sargin, Jonathan R. Epp\",\"doi\":\"10.1126/sciadv.adt8976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Alzheimer’s disease is a debilitating neurodegenerative disorder with no cure and few treatment options. In early stages of Alzheimer’s disease, impaired metabolism and functional connectivity of the retrosplenial cortex strongly predict future cognitive impairments. Therefore, understanding Alzheimer’s disease–related deficits in the retrosplenial cortex is critical for understanding the origins of cognitive impairment and identifying early treatment targets. Using the 5xFAD mouse model, we discovered early, sex-dependent alterations in parvalbumin-interneuron transcriptomic profiles. This corresponded with impaired parvalbumin-interneuron activity, which was sufficient to induce cognitive impairments and dysregulate retrosplenial functional connectivity. In fMRI scans from patients with mild cognitive impairment and Alzheimer’s disease, we observed a similar sex-dependent dysregulation of retrosplenial cortex functional connectivity and, in postmortem tissue from subjects with Alzheimer’s disease, a loss of parvalbumin interneurons. Reversal of cognitive deficits by stimulation of parvalbumin interneurons in the retrosplenial cortex suggests that this may serve as a promising therapeutic strategy.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt8976\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt8976\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt8976","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Impaired parvalbumin interneurons in the retrosplenial cortex as the cause of sex-dependent vulnerability in Alzheimer’s disease
Alzheimer’s disease is a debilitating neurodegenerative disorder with no cure and few treatment options. In early stages of Alzheimer’s disease, impaired metabolism and functional connectivity of the retrosplenial cortex strongly predict future cognitive impairments. Therefore, understanding Alzheimer’s disease–related deficits in the retrosplenial cortex is critical for understanding the origins of cognitive impairment and identifying early treatment targets. Using the 5xFAD mouse model, we discovered early, sex-dependent alterations in parvalbumin-interneuron transcriptomic profiles. This corresponded with impaired parvalbumin-interneuron activity, which was sufficient to induce cognitive impairments and dysregulate retrosplenial functional connectivity. In fMRI scans from patients with mild cognitive impairment and Alzheimer’s disease, we observed a similar sex-dependent dysregulation of retrosplenial cortex functional connectivity and, in postmortem tissue from subjects with Alzheimer’s disease, a loss of parvalbumin interneurons. Reversal of cognitive deficits by stimulation of parvalbumin interneurons in the retrosplenial cortex suggests that this may serve as a promising therapeutic strategy.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.