科学计算用榫卯形忆阻器

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Weiqi Dang, Yu Shen, Wei Wei, Chen Pan, Fanqiang Chen, Gong-Jie Ruan, Yan Luo, Ying Guo, Qiuyang Tan, Jingwen Shi, Xing-Jian Yangdong, Sicheng Chen, Cong Wang, Yongqin Xie, Zai-Zheng Yang, Pengfei Wang, Shuang Wang, Li Zhong, Shaobo Cheng, Chao Zhu, Bin Cheng, Shi-Jun Liang, Feng Miao
{"title":"科学计算用榫卯形忆阻器","authors":"Weiqi Dang,&nbsp;Yu Shen,&nbsp;Wei Wei,&nbsp;Chen Pan,&nbsp;Fanqiang Chen,&nbsp;Gong-Jie Ruan,&nbsp;Yan Luo,&nbsp;Ying Guo,&nbsp;Qiuyang Tan,&nbsp;Jingwen Shi,&nbsp;Xing-Jian Yangdong,&nbsp;Sicheng Chen,&nbsp;Cong Wang,&nbsp;Yongqin Xie,&nbsp;Zai-Zheng Yang,&nbsp;Pengfei Wang,&nbsp;Shuang Wang,&nbsp;Li Zhong,&nbsp;Shaobo Cheng,&nbsp;Chao Zhu,&nbsp;Bin Cheng,&nbsp;Shi-Jun Liang,&nbsp;Feng Miao","doi":"10.1126/sciadv.adu3309","DOIUrl":null,"url":null,"abstract":"<div >In-memory computing hardware based on memristors has emerged as a promising option for scientific computing due to its large-scale parallel data processing capability. However, the nonuniformity issue of the memristors renders the practical deployment of in-memory computing hardware complex, requiring peripheral circuits to ensure the accuracy of scientific computing, thereby resulting in increased power consumption. Here, we present a mortise-tenon–shaped (MTS) memristor with ultrahigh uniformity by introducing a mortise-shaped h-BN flake on the HfO<sub>2</sub> switching layer. The MTS memristor exhibits ultrasmall cycle-to-cycle (~2.5%) and device-to-device (~6.9%) variations compared to the HfO<sub>2</sub> memristor without the MTS structure. Furthermore, we use the MTS memristors to build a partial differential equation solver and demonstrate a convergence speed of solving the Poisson equation five times faster than the solver based on the traditional HfO<sub>2</sub> memristors. This work provides a promising approach for notably reducing the hardware resources required for fast and high-accuracy scientific computing.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 18","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu3309","citationCount":"0","resultStr":"{\"title\":\"Mortise-tenon–shaped memristors for scientific computing\",\"authors\":\"Weiqi Dang,&nbsp;Yu Shen,&nbsp;Wei Wei,&nbsp;Chen Pan,&nbsp;Fanqiang Chen,&nbsp;Gong-Jie Ruan,&nbsp;Yan Luo,&nbsp;Ying Guo,&nbsp;Qiuyang Tan,&nbsp;Jingwen Shi,&nbsp;Xing-Jian Yangdong,&nbsp;Sicheng Chen,&nbsp;Cong Wang,&nbsp;Yongqin Xie,&nbsp;Zai-Zheng Yang,&nbsp;Pengfei Wang,&nbsp;Shuang Wang,&nbsp;Li Zhong,&nbsp;Shaobo Cheng,&nbsp;Chao Zhu,&nbsp;Bin Cheng,&nbsp;Shi-Jun Liang,&nbsp;Feng Miao\",\"doi\":\"10.1126/sciadv.adu3309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >In-memory computing hardware based on memristors has emerged as a promising option for scientific computing due to its large-scale parallel data processing capability. However, the nonuniformity issue of the memristors renders the practical deployment of in-memory computing hardware complex, requiring peripheral circuits to ensure the accuracy of scientific computing, thereby resulting in increased power consumption. Here, we present a mortise-tenon–shaped (MTS) memristor with ultrahigh uniformity by introducing a mortise-shaped h-BN flake on the HfO<sub>2</sub> switching layer. The MTS memristor exhibits ultrasmall cycle-to-cycle (~2.5%) and device-to-device (~6.9%) variations compared to the HfO<sub>2</sub> memristor without the MTS structure. Furthermore, we use the MTS memristors to build a partial differential equation solver and demonstrate a convergence speed of solving the Poisson equation five times faster than the solver based on the traditional HfO<sub>2</sub> memristors. This work provides a promising approach for notably reducing the hardware resources required for fast and high-accuracy scientific computing.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 18\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu3309\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu3309\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu3309","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于忆阻器的内存计算硬件由于其大规模并行数据处理能力而成为科学计算的一个有前途的选择。然而,忆阻器的非均匀性问题使得内存计算硬件的实际部署变得复杂,需要外围电路来保证科学计算的准确性,从而导致功耗增加。在这里,我们通过在HfO2开关层上引入榫形h-BN薄片,提出了一种具有超高均匀性的榫形(MTS)记忆电阻器。与没有MTS结构的HfO2忆阻器相比,MTS忆阻器具有超小的周期间(~2.5%)和器件间(~6.9%)变化。此外,我们使用MTS记忆电阻器构建了一个偏微分方程求解器,并证明了求解泊松方程的收敛速度比基于传统HfO2记忆电阻器的求解器快5倍。这项工作为显著减少快速和高精度科学计算所需的硬件资源提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mortise-tenon–shaped memristors for scientific computing

Mortise-tenon–shaped memristors for scientific computing
In-memory computing hardware based on memristors has emerged as a promising option for scientific computing due to its large-scale parallel data processing capability. However, the nonuniformity issue of the memristors renders the practical deployment of in-memory computing hardware complex, requiring peripheral circuits to ensure the accuracy of scientific computing, thereby resulting in increased power consumption. Here, we present a mortise-tenon–shaped (MTS) memristor with ultrahigh uniformity by introducing a mortise-shaped h-BN flake on the HfO2 switching layer. The MTS memristor exhibits ultrasmall cycle-to-cycle (~2.5%) and device-to-device (~6.9%) variations compared to the HfO2 memristor without the MTS structure. Furthermore, we use the MTS memristors to build a partial differential equation solver and demonstrate a convergence speed of solving the Poisson equation five times faster than the solver based on the traditional HfO2 memristors. This work provides a promising approach for notably reducing the hardware resources required for fast and high-accuracy scientific computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信