Ziwei Wang, Chitra Thakur, Zhuoyue Bi, Yiran Qiu, Wenxuan Zhang, Haoyan Ji, Arjun K. Venkatesan, Sashank Cherukuri, Ke Jian Liu, John D. Haley, Xinwei Mao, Jaymie Meliker, Fei Chen
{"title":"1,4-二恶烷以nrf2依赖的方式诱导上皮-间质转化和癌变","authors":"Ziwei Wang, Chitra Thakur, Zhuoyue Bi, Yiran Qiu, Wenxuan Zhang, Haoyan Ji, Arjun K. Venkatesan, Sashank Cherukuri, Ke Jian Liu, John D. Haley, Xinwei Mao, Jaymie Meliker, Fei Chen","doi":"10.1002/jev2.70072","DOIUrl":null,"url":null,"abstract":"<p>The carcinogenic potential of the environmental pollutant 1,4-dioxane (1,4-D) in humans is not yet fully understood or recognised. In this study, we provide evidence that 1,4-D acts as a carcinogen in human epithelial cells. Using the human bronchial epithelial cell line BEAS-2B, with or without CRISPR-Cas9-mediated Nrf2 knockout, we demonstrate that continuous exposure to environmentally relevant concentrations of 1.25–20 ppm 1,4-D over 2 months induces malignant transformation in an Nrf2-dependent manner. Transformed cells exhibit enhanced anchorage-independent growth in soft agar, increased migration and invasion, and tumorigenic potential in a xenograft mouse model. Integrated RNA sequencing and proteomics analyses reveal that 1,4-D robustly activates Nrf2 signalling, driving extracellular vesicle (EV) biogenesis and cargo loading with syndecan 4 (SDC4) and other proteins, including COL12A1, CAPG and NNMT, which are associated with epithelial-mesenchymal transition (EMT) and cancer metastasis. Nrf2 knockout reduces SDC4 expression and its incorporation into EVs, leading to decreased EV uptake by recipient cells. Unlike EVs from 1,4-D-transformed WT cells, which enhance the proliferation, migration and invasion of recipient cells, EVs from 1,4-D-transformed Nrf2 KO cells exhibit a diminished capacity to promote these EMT properties. Furthermore, we demonstrate that the Nrf2 target gene <i>SDC4</i>, induced by 1,4-D and enriched in EVs, plays a critical role in EV uptake by recipient cells, thereby facilitating EMT propagation. Collectively, our findings suggest that 1,4-D is a human carcinogen, with its carcinogenicity largely dependent on Nrf2 activation, which orchestrates the biogenesis of EVs with EMT-promoting functions.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 5","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70072","citationCount":"0","resultStr":"{\"title\":\"1,4-Dioxane Induces Epithelial-Mesenchymal Transition and Carcinogenesis in an Nrf2-Dependent Manner\",\"authors\":\"Ziwei Wang, Chitra Thakur, Zhuoyue Bi, Yiran Qiu, Wenxuan Zhang, Haoyan Ji, Arjun K. Venkatesan, Sashank Cherukuri, Ke Jian Liu, John D. Haley, Xinwei Mao, Jaymie Meliker, Fei Chen\",\"doi\":\"10.1002/jev2.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The carcinogenic potential of the environmental pollutant 1,4-dioxane (1,4-D) in humans is not yet fully understood or recognised. In this study, we provide evidence that 1,4-D acts as a carcinogen in human epithelial cells. Using the human bronchial epithelial cell line BEAS-2B, with or without CRISPR-Cas9-mediated Nrf2 knockout, we demonstrate that continuous exposure to environmentally relevant concentrations of 1.25–20 ppm 1,4-D over 2 months induces malignant transformation in an Nrf2-dependent manner. Transformed cells exhibit enhanced anchorage-independent growth in soft agar, increased migration and invasion, and tumorigenic potential in a xenograft mouse model. Integrated RNA sequencing and proteomics analyses reveal that 1,4-D robustly activates Nrf2 signalling, driving extracellular vesicle (EV) biogenesis and cargo loading with syndecan 4 (SDC4) and other proteins, including COL12A1, CAPG and NNMT, which are associated with epithelial-mesenchymal transition (EMT) and cancer metastasis. Nrf2 knockout reduces SDC4 expression and its incorporation into EVs, leading to decreased EV uptake by recipient cells. Unlike EVs from 1,4-D-transformed WT cells, which enhance the proliferation, migration and invasion of recipient cells, EVs from 1,4-D-transformed Nrf2 KO cells exhibit a diminished capacity to promote these EMT properties. Furthermore, we demonstrate that the Nrf2 target gene <i>SDC4</i>, induced by 1,4-D and enriched in EVs, plays a critical role in EV uptake by recipient cells, thereby facilitating EMT propagation. Collectively, our findings suggest that 1,4-D is a human carcinogen, with its carcinogenicity largely dependent on Nrf2 activation, which orchestrates the biogenesis of EVs with EMT-promoting functions.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70072\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70072","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
1,4-Dioxane Induces Epithelial-Mesenchymal Transition and Carcinogenesis in an Nrf2-Dependent Manner
The carcinogenic potential of the environmental pollutant 1,4-dioxane (1,4-D) in humans is not yet fully understood or recognised. In this study, we provide evidence that 1,4-D acts as a carcinogen in human epithelial cells. Using the human bronchial epithelial cell line BEAS-2B, with or without CRISPR-Cas9-mediated Nrf2 knockout, we demonstrate that continuous exposure to environmentally relevant concentrations of 1.25–20 ppm 1,4-D over 2 months induces malignant transformation in an Nrf2-dependent manner. Transformed cells exhibit enhanced anchorage-independent growth in soft agar, increased migration and invasion, and tumorigenic potential in a xenograft mouse model. Integrated RNA sequencing and proteomics analyses reveal that 1,4-D robustly activates Nrf2 signalling, driving extracellular vesicle (EV) biogenesis and cargo loading with syndecan 4 (SDC4) and other proteins, including COL12A1, CAPG and NNMT, which are associated with epithelial-mesenchymal transition (EMT) and cancer metastasis. Nrf2 knockout reduces SDC4 expression and its incorporation into EVs, leading to decreased EV uptake by recipient cells. Unlike EVs from 1,4-D-transformed WT cells, which enhance the proliferation, migration and invasion of recipient cells, EVs from 1,4-D-transformed Nrf2 KO cells exhibit a diminished capacity to promote these EMT properties. Furthermore, we demonstrate that the Nrf2 target gene SDC4, induced by 1,4-D and enriched in EVs, plays a critical role in EV uptake by recipient cells, thereby facilitating EMT propagation. Collectively, our findings suggest that 1,4-D is a human carcinogen, with its carcinogenicity largely dependent on Nrf2 activation, which orchestrates the biogenesis of EVs with EMT-promoting functions.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.