香烟过滤嘴醋酸纤维素的热、物理、化学和机械性能

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Eric Wilkinson, Eunha Hoh, Margaret Stack, Natalie Mladenov, George Youssef
{"title":"香烟过滤嘴醋酸纤维素的热、物理、化学和机械性能","authors":"Eric Wilkinson,&nbsp;Eunha Hoh,&nbsp;Margaret Stack,&nbsp;Natalie Mladenov,&nbsp;George Youssef","doi":"10.1002/app.56946","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cigarette filters, primarily composed of cellulose acetate (CA) fibers, pose a significant environmental concern due to their persistence and potential toxicity. This study aimed to comprehensively characterize the physicochemical and thermomechanical properties of CA fibers from unsmoked and smoked cigarette filters. Fourier-transform infrared spectroscopy (FTIR) analysis revealed distinct spectral changes in smoked filters, indicating smoke residue deposition. The higher degree of substitution (DS) observed in filter fibers relative to pure CA powder suggests reduced biodegradability and potential for long-term environmental persistence. Morphological analysis using optical and scanning electron microscopy confirmed the trilobal fiber structure of CA. Thermogravimetric analysis (TGA) demonstrated similar decomposition behavior for all samples, with moisture retention and volatiles in filter fibers. Differential scanning calorimetry (DSC) revealed the effects of additives and smoking on the thermal transitions of CA. Dynamic mechanical analysis (DMA) indicated comparable thermomechanical behavior between unsmoked and smoked filters. The storage moduli were fitted into a modified stiffness–temperature model, evidencing changes in the bond strength distribution as a function of smoking condition. This research provides a comprehensive framework for understanding the impact of the smoking process on the properties and environmental behavior of CA filter fibers.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 22","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal, Physical, Chemical, and Mechanical Properties of Cellulose Acetate From Cigarette Filters\",\"authors\":\"Eric Wilkinson,&nbsp;Eunha Hoh,&nbsp;Margaret Stack,&nbsp;Natalie Mladenov,&nbsp;George Youssef\",\"doi\":\"10.1002/app.56946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cigarette filters, primarily composed of cellulose acetate (CA) fibers, pose a significant environmental concern due to their persistence and potential toxicity. This study aimed to comprehensively characterize the physicochemical and thermomechanical properties of CA fibers from unsmoked and smoked cigarette filters. Fourier-transform infrared spectroscopy (FTIR) analysis revealed distinct spectral changes in smoked filters, indicating smoke residue deposition. The higher degree of substitution (DS) observed in filter fibers relative to pure CA powder suggests reduced biodegradability and potential for long-term environmental persistence. Morphological analysis using optical and scanning electron microscopy confirmed the trilobal fiber structure of CA. Thermogravimetric analysis (TGA) demonstrated similar decomposition behavior for all samples, with moisture retention and volatiles in filter fibers. Differential scanning calorimetry (DSC) revealed the effects of additives and smoking on the thermal transitions of CA. Dynamic mechanical analysis (DMA) indicated comparable thermomechanical behavior between unsmoked and smoked filters. The storage moduli were fitted into a modified stiffness–temperature model, evidencing changes in the bond strength distribution as a function of smoking condition. This research provides a comprehensive framework for understanding the impact of the smoking process on the properties and environmental behavior of CA filter fibers.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 22\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.56946\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56946","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

香烟过滤嘴主要由醋酸纤维素(CA)纤维组成,由于其持久性和潜在毒性,对环境造成了重大影响。本研究旨在全面表征未熏制和熏制香烟过滤嘴中CA纤维的物理化学和热力学性能。傅里叶变换红外光谱(FTIR)分析显示,烟熏过滤器的光谱变化明显,表明烟渣沉积。相对于纯CA粉,在过滤纤维中观察到较高的取代度(DS)表明生物降解性降低,并且具有长期环境持久性的潜力。光学和扫描电镜的形态学分析证实了CA的三叶纤维结构,热重分析(TGA)表明所有样品的分解行为相似,滤纤维中有水分保留和挥发物。差示扫描量热法(DSC)揭示了添加剂和烟熏对CA热转变的影响。动态力学分析(DMA)表明未烟熏和烟熏过滤器的热力学行为相似。将存储模块拟合到改进的刚度-温度模型中,证明了粘结强度分布随吸烟条件的变化。本研究为了解吸烟过程对CA过滤纤维性能和环境行为的影响提供了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal, Physical, Chemical, and Mechanical Properties of Cellulose Acetate From Cigarette Filters

Cigarette filters, primarily composed of cellulose acetate (CA) fibers, pose a significant environmental concern due to their persistence and potential toxicity. This study aimed to comprehensively characterize the physicochemical and thermomechanical properties of CA fibers from unsmoked and smoked cigarette filters. Fourier-transform infrared spectroscopy (FTIR) analysis revealed distinct spectral changes in smoked filters, indicating smoke residue deposition. The higher degree of substitution (DS) observed in filter fibers relative to pure CA powder suggests reduced biodegradability and potential for long-term environmental persistence. Morphological analysis using optical and scanning electron microscopy confirmed the trilobal fiber structure of CA. Thermogravimetric analysis (TGA) demonstrated similar decomposition behavior for all samples, with moisture retention and volatiles in filter fibers. Differential scanning calorimetry (DSC) revealed the effects of additives and smoking on the thermal transitions of CA. Dynamic mechanical analysis (DMA) indicated comparable thermomechanical behavior between unsmoked and smoked filters. The storage moduli were fitted into a modified stiffness–temperature model, evidencing changes in the bond strength distribution as a function of smoking condition. This research provides a comprehensive framework for understanding the impact of the smoking process on the properties and environmental behavior of CA filter fibers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信