{"title":"含铜钢棒的敏化及力学响应","authors":"Pranav Acharya, Ruthvik Gandra, Tetiana Shyrokykh, Charlotte Mayer, Sebastien Hollinger, Seetharaman Sridhar, Narayanan Neithalath","doi":"10.1002/srin.202400358","DOIUrl":null,"url":null,"abstract":"<p>The iron and steel manufacturing sector significantly adds to global greenhouse gas emissions, caused primarily by the carbothermic reduction of iron ore. Recycling scrap steel offers an effective decarbonization strategy but introduces impurities like copper (Cu) that can negatively impact mechanical properties. This study investigates the effects of Cu content and heat treatment on the mechanical performance and sensitization of steel wire rods for tire manufacturing. Steel rods with 0.04 and 0.21 wt% Cu are heated to 1050 or 1200 °C, then air quenched, or furnace cooled. Tensile testing coupled with microscopic analysis is used to evaluate mechanical properties and assess the sensitization effects. Higher Cu content leads to larger sensitized zones with increased Cu precipitation along grain boundaries. Ductility and toughness, crucial for wire drawability, are found to be reduced, despite higher ultimate strength. Slower furnace cooling is seen to result in smaller sensitized zones compared to air quenching, suggesting a pivotal role of cooling rate in sensitization control. The findings provide insights into optimize heat treatment parameters and Cu content limits, balancing mechanical performance and maintaining drawability for enhanced scrap steel recycling in tire production.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitization and Mechanical Response of Cu-Containing Steel Rods\",\"authors\":\"Pranav Acharya, Ruthvik Gandra, Tetiana Shyrokykh, Charlotte Mayer, Sebastien Hollinger, Seetharaman Sridhar, Narayanan Neithalath\",\"doi\":\"10.1002/srin.202400358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The iron and steel manufacturing sector significantly adds to global greenhouse gas emissions, caused primarily by the carbothermic reduction of iron ore. Recycling scrap steel offers an effective decarbonization strategy but introduces impurities like copper (Cu) that can negatively impact mechanical properties. This study investigates the effects of Cu content and heat treatment on the mechanical performance and sensitization of steel wire rods for tire manufacturing. Steel rods with 0.04 and 0.21 wt% Cu are heated to 1050 or 1200 °C, then air quenched, or furnace cooled. Tensile testing coupled with microscopic analysis is used to evaluate mechanical properties and assess the sensitization effects. Higher Cu content leads to larger sensitized zones with increased Cu precipitation along grain boundaries. Ductility and toughness, crucial for wire drawability, are found to be reduced, despite higher ultimate strength. Slower furnace cooling is seen to result in smaller sensitized zones compared to air quenching, suggesting a pivotal role of cooling rate in sensitization control. The findings provide insights into optimize heat treatment parameters and Cu content limits, balancing mechanical performance and maintaining drawability for enhanced scrap steel recycling in tire production.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":\"96 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400358\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400358","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Sensitization and Mechanical Response of Cu-Containing Steel Rods
The iron and steel manufacturing sector significantly adds to global greenhouse gas emissions, caused primarily by the carbothermic reduction of iron ore. Recycling scrap steel offers an effective decarbonization strategy but introduces impurities like copper (Cu) that can negatively impact mechanical properties. This study investigates the effects of Cu content and heat treatment on the mechanical performance and sensitization of steel wire rods for tire manufacturing. Steel rods with 0.04 and 0.21 wt% Cu are heated to 1050 or 1200 °C, then air quenched, or furnace cooled. Tensile testing coupled with microscopic analysis is used to evaluate mechanical properties and assess the sensitization effects. Higher Cu content leads to larger sensitized zones with increased Cu precipitation along grain boundaries. Ductility and toughness, crucial for wire drawability, are found to be reduced, despite higher ultimate strength. Slower furnace cooling is seen to result in smaller sensitized zones compared to air quenching, suggesting a pivotal role of cooling rate in sensitization control. The findings provide insights into optimize heat treatment parameters and Cu content limits, balancing mechanical performance and maintaining drawability for enhanced scrap steel recycling in tire production.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming