时间反转单传感器声源定位概念的实验证明:应用于局部放电

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-03-05 DOI:10.1049/hve2.70008
Hamidreza Karami, Zhaoyang Wang, Parsa Khorasani, Javad Zohrevand, Marcos Rubinstein, Farhad Rachidi
{"title":"时间反转单传感器声源定位概念的实验证明:应用于局部放电","authors":"Hamidreza Karami,&nbsp;Zhaoyang Wang,&nbsp;Parsa Khorasani,&nbsp;Javad Zohrevand,&nbsp;Marcos Rubinstein,&nbsp;Farhad Rachidi","doi":"10.1049/hve2.70008","DOIUrl":null,"url":null,"abstract":"<p>In this paper, for the first time, an experimental proof of concept for utilising time reversal (TR) in the acoustic regime to localise partial discharge (PD) sources was presented using a single sensor. To achieve this, an experimental setup comprising a water tank, acoustic transducers for signal transmission and reception, and 2D scanners was developed. The performance of the proposed method was evaluated across various scenarios, encompassing different PD source locations and sensor placements, barriers obstructing the line of sight between the receiving sensor and PD sources, varying levels of noise, and different frequency bandwidths for the PD sources. The experimental results demonstrate a near-zero localisation error in all considered examples. The achieved resolution was approximately half of the minimum wavelength. Furthermore, the acoustic TR method exhibits remarkable precision in source localisation, even when faced with obstacles such as a multi-layered metallic cylinder and in scenarios lacking a direct line of sight between the sensor and the source. The accuracy of acoustic TR's localisation remained robust in the presence of noise, showcasing resilience at signal-to-noise ratio levels as low as −20 dB. Additionally, the performance of the acoustic TR method remained consistent across a broad frequency spectrum, spanning from 60 to 200 kHz.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"351-361"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70008","citationCount":"0","resultStr":"{\"title\":\"An experimental proof of concept of time-reversal single-sensor acoustic source localisation: Application to partial discharges\",\"authors\":\"Hamidreza Karami,&nbsp;Zhaoyang Wang,&nbsp;Parsa Khorasani,&nbsp;Javad Zohrevand,&nbsp;Marcos Rubinstein,&nbsp;Farhad Rachidi\",\"doi\":\"10.1049/hve2.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, for the first time, an experimental proof of concept for utilising time reversal (TR) in the acoustic regime to localise partial discharge (PD) sources was presented using a single sensor. To achieve this, an experimental setup comprising a water tank, acoustic transducers for signal transmission and reception, and 2D scanners was developed. The performance of the proposed method was evaluated across various scenarios, encompassing different PD source locations and sensor placements, barriers obstructing the line of sight between the receiving sensor and PD sources, varying levels of noise, and different frequency bandwidths for the PD sources. The experimental results demonstrate a near-zero localisation error in all considered examples. The achieved resolution was approximately half of the minimum wavelength. Furthermore, the acoustic TR method exhibits remarkable precision in source localisation, even when faced with obstacles such as a multi-layered metallic cylinder and in scenarios lacking a direct line of sight between the sensor and the source. The accuracy of acoustic TR's localisation remained robust in the presence of noise, showcasing resilience at signal-to-noise ratio levels as low as −20 dB. Additionally, the performance of the acoustic TR method remained consistent across a broad frequency spectrum, spanning from 60 to 200 kHz.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"10 2\",\"pages\":\"351-361\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70008\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70008","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,首次提出了使用单个传感器在声学环境中利用时间反转(TR)来定位局部放电(PD)源的概念的实验证明。为了实现这一目标,开发了一个实验装置,包括一个水箱,用于信号传输和接收的声学换能器,以及2D扫描仪。该方法的性能在各种情况下进行了评估,包括不同的PD源位置和传感器位置、接收传感器和PD源之间的视线障碍、不同的噪声水平和不同的PD源频率带宽。实验结果表明,在所有考虑的例子中,定位误差接近于零。所获得的分辨率约为最小波长的一半。此外,声学TR方法在声源定位方面表现出卓越的精度,即使面对多层金属圆柱体等障碍物,以及传感器和声源之间缺乏直接视线的情况下也是如此。在噪声存在的情况下,声学TR的定位精度仍然保持稳定,在低至- 20 dB的信噪比水平下显示出弹性。此外,声学TR方法的性能在60至200 kHz的宽频谱范围内保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An experimental proof of concept of time-reversal single-sensor acoustic source localisation: Application to partial discharges

An experimental proof of concept of time-reversal single-sensor acoustic source localisation: Application to partial discharges

In this paper, for the first time, an experimental proof of concept for utilising time reversal (TR) in the acoustic regime to localise partial discharge (PD) sources was presented using a single sensor. To achieve this, an experimental setup comprising a water tank, acoustic transducers for signal transmission and reception, and 2D scanners was developed. The performance of the proposed method was evaluated across various scenarios, encompassing different PD source locations and sensor placements, barriers obstructing the line of sight between the receiving sensor and PD sources, varying levels of noise, and different frequency bandwidths for the PD sources. The experimental results demonstrate a near-zero localisation error in all considered examples. The achieved resolution was approximately half of the minimum wavelength. Furthermore, the acoustic TR method exhibits remarkable precision in source localisation, even when faced with obstacles such as a multi-layered metallic cylinder and in scenarios lacking a direct line of sight between the sensor and the source. The accuracy of acoustic TR's localisation remained robust in the presence of noise, showcasing resilience at signal-to-noise ratio levels as low as −20 dB. Additionally, the performance of the acoustic TR method remained consistent across a broad frequency spectrum, spanning from 60 to 200 kHz.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信