纳米颗粒增强电介质油用于改善电绝缘:MgO, Al2O3和sio2基电介质纳米流体的比较

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-02-04 DOI:10.1049/hve2.12515
Mehmet Karataş, Yunus Biçen
{"title":"纳米颗粒增强电介质油用于改善电绝缘:MgO, Al2O3和sio2基电介质纳米流体的比较","authors":"Mehmet Karataş,&nbsp;Yunus Biçen","doi":"10.1049/hve2.12515","DOIUrl":null,"url":null,"abstract":"<p>This study provides comprehensive and quantitative assessments of the electrical insulation, viscosity, thermal conductivity, flash point, acidity, and stability of dielectric nanofluids. In the experiment, naphthenic mineral oil was chosen as the base fluid. MgO, Al<sub>2</sub>O<sub>3</sub>, and SiO<sub>2</sub> were preferred as nanoparticles. In the dielectric breakdown voltage (BDV) tests performed, increased values were observed at certain concentrations for each nanofluid, with the highest value in the SiO<sub>2</sub>-based nanofluid being 83.47 kV at a concentration rate of 0.05 g/L. Adding nanoparticles to the base oil increased the viscosity of all suspensions. Except for MgO-based dielectric nanofluid, the flash points of other nanofluids increased as compared to pure oil. Total acid number (TAN) values, on the other hand, increased for SiO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-based nanofluids but decreased for MgO-based nanofluids. However, all values are quite below the standard limit of 0.25 mgKOH/g. The percentage transmittance values calculated from the ultraviolet and visible light (UV–vis) spectrophotometry results differed for each nanofluid. However, they were all lower than the base oil. In general, the results indicate that the use of dielectric nanofluids in electrical systems will be beneficial, provided that the problem of long-term stabilisation is solved.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 2","pages":"493-504"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12515","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle-enhanced dielectric oils for improved electrical insulation: Comparison of MgO, Al2O3, and SiO2-based dielectric nanofluids\",\"authors\":\"Mehmet Karataş,&nbsp;Yunus Biçen\",\"doi\":\"10.1049/hve2.12515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study provides comprehensive and quantitative assessments of the electrical insulation, viscosity, thermal conductivity, flash point, acidity, and stability of dielectric nanofluids. In the experiment, naphthenic mineral oil was chosen as the base fluid. MgO, Al<sub>2</sub>O<sub>3</sub>, and SiO<sub>2</sub> were preferred as nanoparticles. In the dielectric breakdown voltage (BDV) tests performed, increased values were observed at certain concentrations for each nanofluid, with the highest value in the SiO<sub>2</sub>-based nanofluid being 83.47 kV at a concentration rate of 0.05 g/L. Adding nanoparticles to the base oil increased the viscosity of all suspensions. Except for MgO-based dielectric nanofluid, the flash points of other nanofluids increased as compared to pure oil. Total acid number (TAN) values, on the other hand, increased for SiO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-based nanofluids but decreased for MgO-based nanofluids. However, all values are quite below the standard limit of 0.25 mgKOH/g. The percentage transmittance values calculated from the ultraviolet and visible light (UV–vis) spectrophotometry results differed for each nanofluid. However, they were all lower than the base oil. In general, the results indicate that the use of dielectric nanofluids in electrical systems will be beneficial, provided that the problem of long-term stabilisation is solved.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"10 2\",\"pages\":\"493-504\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12515\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12515\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12515","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提供了电介质纳米流体的电绝缘、粘度、导热性、闪点、酸度和稳定性的全面和定量评估。实验中选择环烷矿物油作为基液。MgO、Al2O3和SiO2是优选的纳米颗粒。在所进行的介质击穿电压(BDV)测试中,观察到每种纳米流体在一定浓度下的数值增加,在浓度率为0.05 g/L时,sio2基纳米流体的最大值为83.47 kV。在基础油中加入纳米颗粒增加了所有悬浮液的粘度。除mgo基介电纳米流体外,其他纳米流体的闪点均高于纯油。另一方面,SiO2和al2o3基纳米流体的总酸值(TAN)增加,而mgo基纳米流体的总酸值(TAN)减少。然而,所有的数值都远远低于0.25 mgKOH/g的标准限值。通过紫外和可见光(UV-vis)分光光度法计算出的透射率百分比值对于每种纳米流体是不同的。然而,它们都低于基础油。总的来说,研究结果表明,在解决长期稳定问题的前提下,在电气系统中使用介电纳米流体是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoparticle-enhanced dielectric oils for improved electrical insulation: Comparison of MgO, Al2O3, and SiO2-based dielectric nanofluids

Nanoparticle-enhanced dielectric oils for improved electrical insulation: Comparison of MgO, Al2O3, and SiO2-based dielectric nanofluids

This study provides comprehensive and quantitative assessments of the electrical insulation, viscosity, thermal conductivity, flash point, acidity, and stability of dielectric nanofluids. In the experiment, naphthenic mineral oil was chosen as the base fluid. MgO, Al2O3, and SiO2 were preferred as nanoparticles. In the dielectric breakdown voltage (BDV) tests performed, increased values were observed at certain concentrations for each nanofluid, with the highest value in the SiO2-based nanofluid being 83.47 kV at a concentration rate of 0.05 g/L. Adding nanoparticles to the base oil increased the viscosity of all suspensions. Except for MgO-based dielectric nanofluid, the flash points of other nanofluids increased as compared to pure oil. Total acid number (TAN) values, on the other hand, increased for SiO2- and Al2O3-based nanofluids but decreased for MgO-based nanofluids. However, all values are quite below the standard limit of 0.25 mgKOH/g. The percentage transmittance values calculated from the ultraviolet and visible light (UV–vis) spectrophotometry results differed for each nanofluid. However, they were all lower than the base oil. In general, the results indicate that the use of dielectric nanofluids in electrical systems will be beneficial, provided that the problem of long-term stabilisation is solved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信