用于复杂Al-Si金属基复合材料XCT体积精细分割的视觉GNN (ViG)架构

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Lapenna, A. Tsamos, F. Faglioni, R. Fioresi, F. Zanchetta, G. Bruno
{"title":"用于复杂Al-Si金属基复合材料XCT体积精细分割的视觉GNN (ViG)架构","authors":"M. Lapenna,&nbsp;A. Tsamos,&nbsp;F. Faglioni,&nbsp;R. Fioresi,&nbsp;F. Zanchetta,&nbsp;G. Bruno","doi":"10.1007/s10853-025-10834-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we implement a vision graph neural network (ViG) architecture to segment microstructures in X-ray computed tomography 3D data. Our ViG architecture is first trained on a synthetic augmented dataset, and then fine-tuned on experimental data to obtain an improved segmentation. Successively, we assess the accuracy of the segmentation on manually-labeled experimental slices. We exemplarily use the approach on a complex microstructure: a metal matrix composite, reinforced with two ceramic phases, intermetallic inclusions and a silicon network, in order to show the generality of our method. ViG model proves to be more efficient than U-Nets in adapting to new data when fine-tuned on a small portion of the experimental data. The fine-tuned ViG shows comparable performance to U-Nets, while largely reducing the number of trainable parameters, with the potential of greater adaptability and efficiency.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 16","pages":"6907 - 6921"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-025-10834-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Vision GNN (ViG) architecture for a fine-tuned segmentation of a complex Al–Si metal matrix composite XCT volume\",\"authors\":\"M. Lapenna,&nbsp;A. Tsamos,&nbsp;F. Faglioni,&nbsp;R. Fioresi,&nbsp;F. Zanchetta,&nbsp;G. Bruno\",\"doi\":\"10.1007/s10853-025-10834-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we implement a vision graph neural network (ViG) architecture to segment microstructures in X-ray computed tomography 3D data. Our ViG architecture is first trained on a synthetic augmented dataset, and then fine-tuned on experimental data to obtain an improved segmentation. Successively, we assess the accuracy of the segmentation on manually-labeled experimental slices. We exemplarily use the approach on a complex microstructure: a metal matrix composite, reinforced with two ceramic phases, intermetallic inclusions and a silicon network, in order to show the generality of our method. ViG model proves to be more efficient than U-Nets in adapting to new data when fine-tuned on a small portion of the experimental data. The fine-tuned ViG shows comparable performance to U-Nets, while largely reducing the number of trainable parameters, with the potential of greater adaptability and efficiency.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 16\",\"pages\":\"6907 - 6921\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10853-025-10834-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10834-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10834-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们实现了一种视觉图神经网络(ViG)架构来分割x射线计算机断层扫描三维数据中的微结构。我们的ViG架构首先在合成增强数据集上进行训练,然后在实验数据上进行微调以获得改进的分割。随后,我们对手工标记的实验切片的分割精度进行了评估。我们举例说明了该方法在复杂微观结构上的应用:一种金属基复合材料,用两种陶瓷相、金属间夹杂物和硅网络增强,以显示我们方法的普遍性。当对一小部分实验数据进行微调时,ViG模型在适应新数据方面比U-Nets更有效。经过微调的ViG表现出与U-Nets相当的性能,同时大大减少了可训练参数的数量,具有更大的适应性和效率潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision GNN (ViG) architecture for a fine-tuned segmentation of a complex Al–Si metal matrix composite XCT volume

In this paper, we implement a vision graph neural network (ViG) architecture to segment microstructures in X-ray computed tomography 3D data. Our ViG architecture is first trained on a synthetic augmented dataset, and then fine-tuned on experimental data to obtain an improved segmentation. Successively, we assess the accuracy of the segmentation on manually-labeled experimental slices. We exemplarily use the approach on a complex microstructure: a metal matrix composite, reinforced with two ceramic phases, intermetallic inclusions and a silicon network, in order to show the generality of our method. ViG model proves to be more efficient than U-Nets in adapting to new data when fine-tuned on a small portion of the experimental data. The fine-tuned ViG shows comparable performance to U-Nets, while largely reducing the number of trainable parameters, with the potential of greater adaptability and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信